
Security Automation and Continuous Monitoring M. Cokus
Internet-Draft D. Haynes
Intended status: Informational D. Rothenberg
Expires: March 11, 2017 The MITRE Corporation
 J. Gonzalez
 Department of Homeland Security
 September 7, 2016

 OVAL(R) Common Model
 draft-cokus-sacm-oval-common-model-01

Abstract

 This document specifies Version 5.11.1 of the Common Model of the
 Open Vulnerability and Assessment Language (OVAL). It contains
 definitions of the constructs and enumerations that are used
 throughout the other core models in the OVAL Language both
 eliminating duplication and facilitating reuse.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on March 11, 2017.

Copyright Notice

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must

Cokus, et al. Expires March 11, 2017 [Page 1]
�
Internet-Draft OVAL Common Model September 2016

 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 3
 1.1. Requirements Language 3
 2. GeneratorType . 3
 3. MessageType . 4
 4. CheckEnumeration . 5
 5. ClassEnumeration . 6
 6. SimpleDatatypeEnumeration 7
 7. ComplexDatatypeEnumeration 10
 8. DatatypeEnumeration . 11
 9. ExistenceEnumeration . 11
 10. FamilyEnumeration . 12
 11. MessageLevelEnumeration 14
 12. OperationEnumeration . 14
 13. OperatorEnumeration . 16
 14. Definition, Test, Object, State, and Variable Identifiers . . 16

 14.1. DefinitionIDPattern 16
 14.2. ObjectIDPattern . 16
 14.3. StateIDPattern . 16
 14.4. TestIDPattern . 17
 14.5. VariableIDPattern 17
 15. ItemIDPattern . 17
 16. EmptyStringType . 17
 17. NonEmptyStringType . 17
 18. Any . 17
 19. Signature . 17
 20. OVAL Common Model Schema 18
 21. Intellectual Property Considerations 59
 22. Acknowledgements . 59
 23. IANA Considerations . 59
 24. Security Considerations 59
 25. Change Log . 60
 25.1. -00 to -01 . 60
 26. References . 60
 26.1. Normative References 60
 26.2. Informative References 61
 Appendix A. Terms and Acronyms 61
 Appendix B. Regular Expression Support 63
 B.1. Supported Regular Expression Syntax 64
 Authors' Addresses . 68

Cokus, et al. Expires March 11, 2017 [Page 2]
�
Internet-Draft OVAL Common Model September 2016

1. Introduction

 The Open Vulnerability and Assessment Language (OVAL) [OVAL-WEBSITE]
 is an international, information security community effort to
 standardize how to assess and report upon the machine state of
 systems. For over ten years, OVAL has been developed in
 collaboration with any and all interested parties to promote open and
 publicly available security content and to standardize the
 representation of this information across the entire spectrum of
 security tools and services.

 OVAL provides an established framework for making assertions about a
 system's state by standardizing the three main steps of the
 assessment process: representing the current machine state; analyzing
 the system for the presence of the specified machine state; and
 representing the results of the assessment which facilitates
 collaboration and information sharing among the information security
 community and interoperability among tools.

 This draft is part of the OVAL contribution to the IETF SACM WG and
 is intended to serve as a starting point for its endpoint posture
 assessment data modeling needs.

1.1. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

2. GeneratorType

 The GeneratorType provides a structure for recording information
 about how and when the OVAL Content was created, for what version of
 the OVAL Language it was created, and any additional information at
 the discretion of the content author.

Cokus, et al. Expires March 11, 2017 [Page 3]
�
Internet-Draft OVAL Common Model September 2016

 +-----------------+----------+-------+------------------------------+
 | Property | Type | Count | Description |
 +-----------------+----------+-------+------------------------------+
product_name	string	0..1	Entity that generated the
			OVAL Content. This value
			SHOULD be expressed as a CPE
			Name.
product_version	string	0..1	Version of the entity that
			generated the OVAL Content.
schema_version	double	1	Version of the OVAL Language
			that the OVAL Content is
			expected to validate
			against.
timestamp	DateTime	1	The date and time of when
			the OVAL Content, in its
			entirety, was originally
			generated. This value is
			independent of the time at
			which any of the components
			of the OVAL Content were
			created.
extension_point	any	0..*	An extension point that
			allows for the inclusion of
			any additional information
			associated with the
			generation of the OVAL
			Content.
 +-----------------+----------+-------+------------------------------+

 Table 1: GeneratorType Construct

 The extension_point property is not considered a part of the OVAL
 Language proper, but rather, an extension point that allows
 organizations to expand the OVAL Language to better suit their needs.

3. MessageType

 The MessageType construct is used to relay messages from tools at
 run-time. The decision of how to use these messages is left to the
 tool developer as an implementation detail based upon the context in
 which the message is used.

Cokus, et al. Expires March 11, 2017 [Page 4]
�
Internet-Draft OVAL Common Model September 2016

 +----------+-------------------------+-------+----------------------+
 | Property | Type | Count | Description |
 +----------+-------------------------+-------+----------------------+
level	MessageLevelEnumeration	0..1	The level of the
			message. Default
			Value: 'info'
message	string	1	The actual message
			relayed from the
			tool.
 +----------+-------------------------+-------+----------------------+

 Table 2: MessageType Construct

4. CheckEnumeration

 The CheckEnumeration enumeration defines the acceptable values that
 can be used to determine the final result of an evaluation based on
 how many of the individual results that make up an evaluation are
 true. This enumeration is used in different contexts throughout the
 OVAL Language. See the Check Enumeration Evaluation section of [I-
 D.draft-haynes-sacm-oval-processing-model], for more information on
 how this enumeration is used.

Cokus, et al. Expires March 11, 2017 [Page 5]
�
Internet-Draft OVAL Common Model September 2016

 +---------+---+
 | Value | Description |
 +---------+---+
all	The final result is 'true' only if all of the
	individual results under consideration are 'true'.
at	The final result is 'true' only if one or more of the
least	individual results under consideration are 'true'.
one	
none	DEPRECATED (5.3) In Version 5.3 of the OVAL Language,
exist	the checking of existence and state were separated into
	two distinct checks CheckEnumeration (state) and
	ExistenceEnumeration (existence). Since
	CheckEnumeration is now used to specify how many
	objects should satisfy a given state for a test to
	return true, and no longer used for specifying how many
	objects must exist for a test to return true, a value
	of 'none exist' is no longer needed. The final result
	is 'true' only if zero of the individual results under
	consideration are 'true'.
none	The final result is 'true' only if zero of the
satisfy	individual results under consideration are 'true'.
only	The final result is 'true' only if one of the
one	individual results under consideration is 'true'.
 +---------+---+

 Table 3: CheckEnumeration Construct

5. ClassEnumeration

 The ClassEnumeration defines the different classes of OVAL
 Definitions where each class specifies the overall intent of the OVAL
 Definition.

Cokus, et al. Expires March 11, 2017 [Page 6]
�
Internet-Draft OVAL Common Model September 2016

 +---------------+---+
 | Value | Description |
 +---------------+---+
compliance	This class describes OVAL Definitions that check
	to see if a system's state is compliant with a
	specific policy. An evaluation result of 'true',
	for this class of OVAL Definitions, indicates
	that a system is compliant with the stated
	policy.
inventory	This class describes OVAL Definitions that check
	to see if a piece of software is installed on a
	system. An evaluation result of 'true', for this
	class of OVAL Definitions, indicates that the
	specified software is installed on the system.
miscellaneous	This class describes OVAL Definitions that do not
	belong to any of the other defined classes.
patch	This class describes OVAL Definitions that check
	to see if a patch should be installed on a
	system. An evaluation result of 'true', for this
	class of OVAL Definitions, indicates that the
	specified patch should be installed on the
	system.
vulnerablity	This class describes OVAL Definitions that check
	to see if the system is in a vulnerable state. An
	evaluation result of 'true', for this class of
	OVAL Definitions, indicates that the system is in
	a vulnerable state.
 +---------------+---+

 Table 4: ClassEnumeration Construct

6. SimpleDatatypeEnumeration

 The SimpleDatatypeEnumeration defines the legal simple datatypes that
 are used to describe the values in the OVAL Language. Simple
 datatypes are those that are based upon a string representation
 without additional structure. Each value in the
 SimpleDatatypeEnumeration has an allowed set of operations listed in
 the table below. These operations are based upon the full list of
 operations which are defined in the OperationEnumeration.

 +-------------------+---+
 | Value | Description |
 +-------------------+---+

Cokus, et al. Expires March 11, 2017 [Page 7]
�
Internet-Draft OVAL Common Model September 2016

binary	Data of this type conforms to the W3C
	Recommendation for hex-encoded binary data
	[W3C-HEX-BIN]. Valid operations are: "equals"
	and "not equal".
boolean	Data of this type conforms to the W3C
	Recommendation for boolean data
	[W3C-BOOLEAN]. Valid operations are: "equals"
	and "not equal".

evr_string	Data of this type conforms to the format
	EPOCH:VERSION-RELEASE and comparisons
	involving this type MUST follow the algorithm
	of librpm's rpmvercmp() function. Valid
	operations are: "equals", "not equal",
	"greater than", "greater than or equal",
	"less than", and "less than or equal".
debian_evr_string	Data of this type conforms to the format
	EPOCH:UPSTREAM_VERSION-DEBIAN_REVISION and
	comparisons involving this datatype should
	follow the algorithm outlined in Chapter 5 of
	the "Debian Policy Manual"
	[DEBIAN-POLICY-MANUAL]. An implementation of
	this is the cmpversions() function in dpkg's
	enquiry.c. Valid operations are: "equals",
	"not equal", "greater than", "greater than or
	equal", "less than", and "less than or
	equal".
fileset_revision	Data of this type conforms to the version
	string related to filesets in HP-UX. An
	example would be 'A.03.61.00'. Valid
	operations are: "equals", "not equal",
	"greater than", "greater than or equal",
	"less than", and "less than or equal".
float	Data of this type conforms to the W3C
	Recommendation for float data [W3C-FLOAT].
	Valid operations are: "equals", "not equal",
	"greater than", "greater than or equal",
	"less than", and "less than or equal".
ios_version	Data of this type conforms to Cisco IOS Train
	strings. These are in essence version strings
	for IOS. Please refer to Cisco's IOS
	Reference Guide for information on how to
	compare different Trains as they follow a

Cokus, et al. Expires March 11, 2017 [Page 8]
�
Internet-Draft OVAL Common Model September 2016

	very specific pattern. [CISCO-IOS] Valid
	operations are: "equals", "not equal",
	"greater than", "greater than or equal",
	"less than", and "less than or equal".
int	Data of this type conforms to the W3C
	Recommendation for integer data [W3C-INT].
	Valid operations are: "equals", "not equal",
	"greater than", "greater than or equal",
	"less than", "less than or equal", bitwise
	and" and "bitwise or".
ipv4_address	The ipv4_address datatype represents IPv4
	addresses and IPv4 address prefixes. Its
	value space consists of the set of ordered
	pairs of integers where the first element of
	each pair is in the range [0,2^32) (the
	representable range of a 32-bit unsigned
	int), and the second is in the range [0,32].
	The first element is an address, and the
	second is a prefix length. The lexical space
	is dotted-quad CIDR-like notation ('a.b.c.d'
	where 'a', 'b', 'c', and 'd' are integers
	from 0-255), optionally followed by a slash
	('/') and either a prefix length (an integer
	from 0-32) or a netmask represented in the
	dotted-quad notation described previously.
	Examples of legal values are '192.0.2.0',
	'192.0.2.0/32', and
	'192.0.2.0/255.255.255.255'. Additionally,
	leading zeros are permitted such that
	'192.0.2.0' is equal to '192.000.002.000'. If
	a prefix length is not specified, it is
	implicitly equal to 32. [RFC791] Valid

	operations are: "equals", "not equal",
	"greater than", "greater than or equal",
	"less than", "less than or equal", "subset
	of", and "superset of".
ipv6_address	The ipv6_address datatype represents IPv6
	addresses and IPv6 address prefixes. Its
	value space consists of the set of ordered
	pairs of integers where the first element of
	each pair is in the range [0,2^128) (the
	representable range of a 128-bit unsigned
	int), and the second is in the range [0,128].
	The first element is an address, and the
	second is a prefix length. The lexical space

Cokus, et al. Expires March 11, 2017 [Page 9]
�
Internet-Draft OVAL Common Model September 2016

	is CIDR notation given in IETF specification
	RFC 4291 for textual representations of IPv6
	addresses and IPv6 address prefixes (see
	sections 2.2 and 2.3). If a prefix-length is
	not specified, it is implicitly equal to 128.
	[RFC4291] Valid operations are: "equals",
	"not equal", "greater than", "greater than or
	equal", "less than", "less than or equal",
	"subset of", and "superset of".
string	Data of this type conforms to the W3C
	Recommendation for string data [W3C-STRING].
	Valid operations are: "equals", "not equal",
	"case insensitive equals", "case insensitive
	not equal", and "pattern match".
version	Data of this type represents a value that is
	a hierarchical list of non-negative integers
	separated by a single character delimiter.
	Any single non-number character may be used
	as a delimiter and the delimiter may vary
	between component of a given version string.
	Valid operations are: "equals", "not equal",
	"greater than", "greater than or equal",
	"less than", and "less than or equal".
 +-------------------+---+

 Table 5: SimpleDatatypeEnumeration Construct

7. ComplexDatatypeEnumeration

 The ComplexDatatypeEnumeration defines the complex datatypes that are
 supported the OVAL Language. These datatypes describe the values
 with some structure beyond simple string like content. One simple
 example of a complex dataytype is an address. The address might be
 composed of a street, city, state, and zip code. These for field
 together comprise the complete address.

 Each value in the ComplexDatatypeEnumeration has an allowed set of
 operations listed in the table below. These operations are based
 upon the full list of operations which are defined in the
 OperationEnumeration.

Cokus, et al. Expires March 11, 2017 [Page 10]
�
Internet-Draft OVAL Common Model September 2016

 +--------+--+
 | Value | Description |
 +--------+--+

 | record | Data of this type represents a collection of named |
 | | fields and values. Valid operations are: * equals |
 +--------+--+

 Table 6: ComplexDatatypeEnumeration Construct

8. DatatypeEnumeration

 The DatatypeEnumeration defines the complete set of all valid
 datatypes. This set is created as the union of the
 SimpleDatatypeEnumeration and the ComplexDatatypeEnumeration. This
 type is provided for convenience when working with the OVAL Language.

9. ExistenceEnumeration

 The ExistenceEnumeration defines the acceptable values that can be
 used to specify the expected number of components under consideration
 must exist.

 +---------------------+---+
 | Value | Description |
 +---------------------+---+
all_exist	The final existence result is 'true' only
	if all of the components under
	consideration exist.
any_exist	The final existence result is 'true' only
	if zero or more of the components under
	consideration exist.
at_least_one_exists	The final existence result is 'true' only
	if one or more of the components under
	consideration exist.
none_exist	The final existence result is 'true' only
	if zero of the components under
	consideration exist.
only_one_exists	The final existence result is 'true' only
	if one of the components under
	consideration exist.
 +---------------------+---+

 Table 7: ExistenceEnumeration Construct

Cokus, et al. Expires March 11, 2017 [Page 11]
�
Internet-Draft OVAL Common Model September 2016

10. FamilyEnumeration

 The FamilyEnumeration defines the high-level family that an operating
 system belongs to.

Cokus, et al. Expires March 11, 2017 [Page 12]
�
Internet-Draft OVAL Common Model September 2016

 +-----------------------+---+
 | Value | Description |
 +-----------------------+---+
android	The android value describes the Android
	mobile operating system.
asa	The asa value describes the Cisco ASA
	security devices.
apple_ios	The apple_ios value describes the iOS
	mobile operating system.
catos	This value describes Cisco CatOS
	operating systems.
ios	This value describes Cisco IOS operating
	systems.
iosxe	This value describes Cisco IOS XE
	operating systems.
junos	This value describes Juniper JunOS
	operating systems.
macos	This value describes Apple Mac OS
	operating systems.
pixos	This value describes Cisco PIX operating
	systems.
undefined	This value is reserved for operating
	systems where the high-level family is
	not available in the current enumeration.
unix	This value describes UNIX operating
	systems.
vmware_infrastructure	This value describes the VMWare
	Infrastructure.
windows	This value describes Microsoft Windows
	operating systems.
 +-----------------------+---+

 Table 8: FamilyEnumeration Construct

Cokus, et al. Expires March 11, 2017 [Page 13]
�

Internet-Draft OVAL Common Model September 2016

11. MessageLevelEnumeration

 The MessageLevelEnumeration defines the different levels that can be
 associated with a message.

 +---------+---+
 | Value | Description |
 +---------+---+
debug	This level is reserved for messages that should only be
	displayed when the tool is run in verbose mode.
error	This level is reserved for messages where an error was
	encountered, but the tool could continue execution.
fatal	This level is reserved for messages where an error was
	encountered and the tool could not continue execution.
info	This level is reserved for messages that contain
	informational data.
warning	This level is reserved for messages that indicate that
	a problem may have occurred.
 +---------+---+

 Table 9: MessageLevelEnumeration Construct

12. OperationEnumeration

 The OperationEnumeration defines the acceptable operations in the
 OVAL Language. The precise meaning of an operation is dependent on
 the datatype of the values under consideration. See the OVAL Entity
 Datatype and Operation Evaluation section of [I-D.draft-haynes-sacm-
 oval-processing-model] for additional information.

 +-------------+---+
 | Value | Description |
 +-------------+---+
equals	This operation evaluates to 'true' if the actual
	value is equal to the stated value.
not equal	This operation evaluates to 'true' if the actual
	value is not equal to the stated value.
case	This operation evaluates to 'true' if the actual
insensitive	value is equal to the stated value when performing
equals	a case insensitive comparison.
case	This operation evaluates to 'true' if the actual

Cokus, et al. Expires March 11, 2017 [Page 14]
�
Internet-Draft OVAL Common Model September 2016

insensitive	value is not equal to the stated value when
not equal	performing a case insensitive comparison.
greater	This operation evaluates to 'true' if the actual
than	value is greater than the stated value.
less than	This operation evaluates to 'true' if the actual
	value is less than the stated value.
greater	This operation evaluates to 'true' if the actual
than or	value is greater than or equal to the stated value.
equal	
less than	This operation evaluates to 'true' if the actual
or equal	value is less than or equal to the stated value.
bitwise and	This operation evaluates to 'true' if the result of
	the BITWISE AND operation between the binary
	representation of the stated value and the actual
	value is equal to the binary representation of the
	stated value. This operation is used to determine
	if a specific bit in a value is set.

bitwise or	This operation evaluates to 'true' if the result of
	the BITWISE OR operation between the binary
	representation of the stated value and the actual
	value is equal to the binary representation of the
	stated value. This operation is used to determine
	if a specific bit in a value is not set.
pattern	This operation evaluates to 'true' if the actual
match	value matches the stated regular expression. The
	OVAL Language supports a common subset of the Perl
	5 Compatible Regular Expression Specification.
subset of	This operation evaluates to 'true' if the actual
	set is a subset of the stated set.
superset of	This operation evaluates to 'true' if the actual
	set is a superset of the stated set.
 +-------------+---+

 Table 10: OperationEnumeration Construct

Cokus, et al. Expires March 11, 2017 [Page 15]
�
Internet-Draft OVAL Common Model September 2016

13. OperatorEnumeration

 The OperatorEnumeration defines the acceptable logical operators in
 the OVAL Language. See the Operator Enumeration Evaluation section
 of [I-D.draft-haynes-sacm-oval-processing-model] for additional
 information.

 +-------+---+
 | Value | Description |
 +-------+---+
AND	This operator evaluates to 'true' only if every argument
	is 'true'.
ONE	This operator evaluates to 'true' only if one argument is
	'true'.
OR	This operator evaluates to 'true' only if one or more
	arguments are 'true'.
XOR	This operator evaluates to 'true' only if an odd number
	of arguments are 'true'.
 +-------+---+

 Table 11: OperatorEnumeration Construct

14. Definition, Test, Object, State, and Variable Identifiers

14.1. DefinitionIDPattern

 The DefinitionIDPattern defines the URN format associated with OVAL
 Definition identifiers. All OVAL Definition identifiers MUST conform
 to the following regular expression:

 oval:[A-Za-z0-9_\-\.]+:def:[1-9][0-9]*

14.2. ObjectIDPattern

 The ObjectIDPattern defines the URN format associated with OVAL
 Object identifiers. All OVAL Object identifiers MUST conform to the
 following regular expression:

 oval:[A-Za-z0-9_\-\.]+:obj:[1-9][0-9]*

14.3. StateIDPattern

 The StateIDPattern defines the URN format associated with OVAL State
 identifiers. All OVAL State identifiers MUST conform to the

 following regular expression:

Cokus, et al. Expires March 11, 2017 [Page 16]
�
Internet-Draft OVAL Common Model September 2016

 oval:[A-Za-z0-9_\-\.]+:ste:[1-9][0-9]*

14.4. TestIDPattern

 The TestIDPattern defines the URN format associated with OVAL Test
 identifiers. All OVAL Test identifiers MUST conform to the following
 regular expression:

 oval:[A-Za-z0-9_\-\.]+:tst:[1-9][0-9]*

14.5. VariableIDPattern

 The VariableIDPattern defines the URN format associated with OVAL
 Variable identifiers. All OVAL Variable identifiers MUST conform to
 the following regular expression:

 oval:[A-Za-z0-9_\-\.]+:var:[1-9][0-9]*

15. ItemIDPattern

 The ItemIDPattern defines the format associated with OVAL Item
 identifiers. All OVAL Item identifiers are unsigned integer values.

16. EmptyStringType

 The EmptyStringType defines a string value with a maximum length of
 zero.

17. NonEmptyStringType

 The NonEmptyStringType defines a string value with a length greater
 than zero.

18. Any

 The Any datatype represents an abstraction that serves as the basis
 for other user defined datatypes. This Any datatype does not
 constrain its data in anyway. This type is used to allow for
 extension with the OVAL Language.

19. Signature

 The Signature type provides a structure for applying a digital
 signature to OVAL Content. Any binding or representation of the OVAL
 Language MUST specify the format and structure of this type. This
 type is defined in an external namespace and when referenced in this
 document will be prefix with the external namespace alias as follows,
 ext:Signature.

Cokus, et al. Expires March 11, 2017 [Page 17]
�
Internet-Draft OVAL Common Model September 2016

20. OVAL Common Model Schema

 The XML Schema that implements this OVAL Common Model can be found
 below.

 <?xml version="1.0" encoding="utf-8"?>
 <xsd:schema
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:oval="http://oval.mitre.org/XMLSchema/oval-common-5"
 xmlns:sch="http://purl.oclc.org/dsdl/schematron"
 targetNamespace="http://oval.mitre.org/XMLSchema/
 oval-common-5"
 elementFormDefault="qualified" version="5.11">
 <xsd:annotation>
 <xsd:documentation>The following is a

 description of the common types that are
 shared across the different schemas within
 Open Vulnerability and Assessment Language
 (OVAL). Each type is described in detail and
 should provide the information necessary to
 understand what each represents. This
 document is intended for developers and
 assumes some familiarity with XML. A high
 level description of the interaction between
 these type is not outlined
 here.</xsd:documentation>
 <xsd:appinfo>
 <schema>Core Common</schema>
 <version>5.11.1</version>
 <date>4/22/2015 09:00:00 AM</date>
 <terms_of_use>Copyright (C) 2010 United States Government.
 All Rights Reserved.</terms_of_use>
 <sch:ns prefix="oval"
 uri="http://oval.mitre.org/XMLSchema/oval-common-5"/>
 <sch:ns prefix="oval-def"
 uri="http://oval.mitre.org/XMLSchema/oval-definitions-5"
 />
 </xsd:appinfo>
 </xsd:annotation>
 <!-- == -->
 <!-- =============== GLOBAL ELEMENTS ==================== -->
 <!-- == -->
 <xsd:element name="deprecated_info"
 type="oval:DeprecatedInfoType">
 <xsd:annotation>
 <xsd:documentation>The deprecated_info
 element is used in documenting deprecation

Cokus, et al. Expires March 11, 2017 [Page 18]
�
Internet-Draft OVAL Common Model September 2016

 information for items in the OVAL
 Language. It is declared globally as it
 can be found in any of the OVAL schemas
 and is used as part of the appinfo
 documentation and therefore it is not an
 element that can be declared locally and
 based off a global
 type..</xsd:documentation>
 </xsd:annotation>
 </xsd:element>
 <xsd:element name="element_mapping"
 type="oval:ElementMapType">
 <xsd:annotation>
 <xsd:documentation>The element_mapping
 element is used in documenting which
 tests, objects, states, and system
 characteristic items are associated with
 each other. It provides a way to
 explicitly and programatically associate
 the test, object, state, and item
 definitions.</xsd:documentation>
 </xsd:annotation>
 </xsd:element>
 <xsd:element name="notes" type="oval:NotesType">
 <xsd:annotation>
 <xsd:documentation>Element for containing
 notes; can be replaced using a
 substitution group.</xsd:documentation>
 </xsd:annotation>
 </xsd:element>
 <!-- == -->
 <!-- ================ GLOBAL TYPES ====================== -->
 <!-- == -->
 <xsd:complexType name="ElementMapType">
 <xsd:annotation>
 <xsd:documentation>The ElementMapType is
 used to document the association between
 OVAL test, object, state, and item
 entities.</xsd:documentation>
 </xsd:annotation>
 <xsd:sequence>

 <xsd:element name="test"
 type="oval:ElementMapItemType"
 minOccurs="1">
 <xsd:annotation>
 <xsd:documentation>The local name of an
 OVAL test.</xsd:documentation>
 </xsd:annotation>

Cokus, et al. Expires March 11, 2017 [Page 19]
�
Internet-Draft OVAL Common Model September 2016

 </xsd:element>
 <xsd:element name="object"
 type="oval:ElementMapItemType"
 minOccurs="0">
 <xsd:annotation>
 <xsd:documentation>The local name of an
 OVAL object.</xsd:documentation>
 </xsd:annotation>
 </xsd:element>
 <xsd:element name="state"
 type="oval:ElementMapItemType"
 minOccurs="0">
 <xsd:annotation>
 <xsd:documentation>The local name of an
 OVAL state.</xsd:documentation>
 </xsd:annotation>
 </xsd:element>
 <xsd:element name="item"
 type="oval:ElementMapItemType"
 minOccurs="0">
 <xsd:annotation>
 <xsd:documentation>The local name of an
 OVAL item.</xsd:documentation>
 </xsd:annotation>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="ElementMapItemType">
 <xsd:annotation>
 <xsd:documentation>Defines a reference to an
 OVAL entity using the schema namespace and
 element name.</xsd:documentation>
 </xsd:annotation>
 <xsd:simpleContent>
 <xsd:extension base="xsd:NCName">
 <xsd:attribute name="target_namespace"
 type="xsd:anyURI" use="optional">
 <xsd:annotation>
 <xsd:documentation>The
 target_namespace attributes
 indicates what XML namespace the
 element belongs to. If not present,
 the namespace is that of the
 document in which the
 ElementMapItemType instance element
 appears.</xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>

Cokus, et al. Expires March 11, 2017 [Page 20]
�
Internet-Draft OVAL Common Model September 2016

 </xsd:extension>
 </xsd:simpleContent>
 </xsd:complexType>
 <xsd:complexType name="DeprecatedInfoType">
 <xsd:annotation>
 <xsd:documentation>The DeprecatedInfoType
 complex type defines a structure that will
 be used to flag schema-defined constructs
 as deprecated. It holds information
 related to the version of OVAL when the

 construct was deprecated along with a
 reason and comment.</xsd:documentation>
 </xsd:annotation>
 <xsd:sequence>
 <xsd:element name="version">
 <xsd:annotation>
 <xsd:documentation>The required version
 child element details the version of
 OVAL in which the construct became
 deprecated.</xsd:documentation>
 </xsd:annotation>
 <xsd:simpleType>
 <xsd:restriction
 base="oval:SchemaVersionPattern"/>
 </xsd:simpleType>
 </xsd:element>
 <xsd:element name="reason" type="xsd:string">
 <xsd:annotation>
 <xsd:documentation>The required reason
 child element is used to provide an
 explanation as to why an item was
 deprecated and to direct a reader to
 possible alternative structures within
 OVAL.</xsd:documentation>
 </xsd:annotation>
 </xsd:element>
 <xsd:element name="comment"
 type="xsd:string" minOccurs="0"
 maxOccurs="1">
 <xsd:annotation>
 <xsd:documentation>The optional comment
 child element is used to supply
 additional information regarding the
 element's deprecated
 status.</xsd:documentation>
 </xsd:annotation>
 </xsd:element>
 </xsd:sequence>

Cokus, et al. Expires March 11, 2017 [Page 21]
�
Internet-Draft OVAL Common Model September 2016

 </xsd:complexType>
 <xsd:complexType name="GeneratorType">
 <xsd:annotation>
 <xsd:documentation>The GeneratorType complex
 type defines an element that is used to
 hold information about when a particular
 OVAL document was compiled, what version
 of the schema was used, what tool compiled
 the document, and what version of that
 tool was used. </xsd:documentation>
 <xsd:documentation>Additional generator
 information is also allowed although it is
 not part of the official OVAL Schema.
 Individual organizations can place
 generator information that they feel are
 important and these will be skipped during
 the validation. All OVAL really cares
 about is that the stated generator
 information is there.</xsd:documentation>
 </xsd:annotation>
 <xsd:sequence>
 <xsd:element name="product_name"
 type="xsd:string" minOccurs="0"
 maxOccurs="1">
 <xsd:annotation>
 <xsd:documentation>The optional
 product_name specifies the name of the
 application used to generate the file.
 Product names SHOULD be expressed as
 CPE Names according to the Common
 Platform Enumeration: Name Matching
 Specification Version
 2.3.</xsd:documentation>
 </xsd:annotation>
 </xsd:element>

 <xsd:element name="product_version"
 type="xsd:string" minOccurs="0"
 maxOccurs="1">
 <xsd:annotation>
 <xsd:documentation>The optional
 product_version specifies the version
 of the application used to generate
 the file.</xsd:documentation>
 </xsd:annotation>
 </xsd:element>
 <xsd:element name="schema_version"
 maxOccurs="unbounded"
 type="oval:SchemaVersionType">

Cokus, et al. Expires March 11, 2017 [Page 22]
�
Internet-Draft OVAL Common Model September 2016

 <xsd:annotation>
 <xsd:documentation>The required
 schema_version specifies the version
 of the OVAL Schema that the document
 has been written in and that should be
 used for validation. The versions for
 both the Core and any platform
 extensions used should be declared in
 separate schema_version
 elements.</xsd:documentation>
 </xsd:annotation>
 </xsd:element>
 <xsd:element name="timestamp"
 type="xsd:dateTime">
 <xsd:annotation>
 <!--- TODO - Add schematron to enforce
 yyyy-mm-ddThh:mm:ss format -->
 <xsd:documentation>The required
 timestamp specifies when the
 particular OVAL document was compiled.
 The format for the timestamp is
 yyyy-mm-ddThh:mm:ss. Note that the
 timestamp element does not specify
 when a definition (or set of
 definitions) was created or modified
 but rather when the actual XML
 document that contains the definition
 was created. For example, the document
 might have pulled a bunch of existing
 OVAL Definitions together, each of the
 definitions having been created at
 some point in the past. The timestamp
 in this case would be when the
 combined document was
 created.</xsd:documentation>
 </xsd:annotation>
 </xsd:element>
 <xsd:any minOccurs="0" maxOccurs="unbounded"
 processContents="lax">
 <xsd:annotation>
 <xsd:documentation>The Asset
 Identification specification
 (http://scap.nist.gov/specifications/ai/)
 provides a standardized way of
 reporting asset information across
 different
 organizations.</xsd:documentation>
 <xsd:documentation>Asset Identification

Cokus, et al. Expires March 11, 2017 [Page 23]
�
Internet-Draft OVAL Common Model September 2016

 elements can hold data useful for
 identifying what tool, what version of
 that tool was used, and identify other
 assets used to compile an OVAL

 document, such as persons or
 organizations.</xsd:documentation>
 <xsd:documentation>To support greater
 interoperability, an ai:assets element
 describing assets used to produce an
 OVAL document may appear at this point
 in an OVAL
 document.</xsd:documentation>
 </xsd:annotation>
 </xsd:any>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="SchemaVersionType">
 <xsd:annotation>
 <xsd:documentation>The core version MUST
 match on all platform schema
 versions.</xsd:documentation>
 <xsd:appinfo>
 <sch:pattern
 id="oval_schema_version_one_core_element">
 <sch:rule
 context="oval-def:oval_definitions/
 oval-def:generator">
 <sch:assert
 test="count(oval:schema_version
 [not(@platform)]) = 1"
 >One (and only one) schema_version
 element MUST be present and omit the
 platform attribute to represent the
 core version.</sch:assert>
 </sch:rule>
 </sch:pattern>
 <sch:pattern
 id="oval_schema_version_empty_platform">
 <sch:rule
 context="oval-def:oval_definitions/
 oval-def:generator/
 oval:schema_version[@platform]">
 <sch:report test="@platform = ''"
 >Warning: The platform attribute
 should be set to the URI of the
 target namespace for this platform
 extension.</sch:report>
 </sch:rule>

Cokus, et al. Expires March 11, 2017 [Page 24]
�
Internet-Draft OVAL Common Model September 2016

 </sch:pattern>
 <sch:pattern
 id="oval_schema_version_core_matches_platforms">
 <sch:rule
 context="oval-def:oval_definitions/
 oval-def:generator/
 oval:schema_version[@platform]">
 <sch:let name="core_version_portion"
 value="parent::oval-def:generator/
 oval:schema_version[not(@platform)]"/>
 <sch:assert
 test="starts-with(.,$core_version_portion)"
 >This platform's version
 (<sch:value-of select="."/>) MUST
 match the core version being used:
 <sch:value-of
 select="$core_version_portion"
 />.</sch:assert>
 </sch:rule>
 </sch:pattern>
 </xsd:appinfo>
 </xsd:annotation>
 <xsd:simpleContent>
 <xsd:extension
 base="oval:SchemaVersionPattern">
 <xsd:attribute name="platform"
 type="xsd:anyURI" use="optional">
 <xsd:annotation>
 <xsd:documentation>The platform

 attribute is available to indicate
 the URI of the target namespace for
 any platform extension being
 included. This platform attribute is
 to be omitted when specifying the
 core schema
 version.</xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 </xsd:extension>
 </xsd:simpleContent>
 </xsd:complexType>
 <xsd:complexType name="MessageType">
 <xsd:annotation>
 <xsd:documentation>The MessageType complex
 type defines the structure for which
 messages are relayed from the data
 collection engine. Each message is a text
 string that has an associated level

Cokus, et al. Expires March 11, 2017 [Page 25]
�
Internet-Draft OVAL Common Model September 2016

 attribute identifying the type of message
 being sent. These messages could be error
 messages, warning messages, debug
 messages, etc. How the messages are used
 by tools and whether or not they are
 displayed to the user is up to the
 specific implementation. Please refer to
 the description of the
 MessageLevelEnumeration for more
 information about each type of
 message.</xsd:documentation>
 </xsd:annotation>
 <xsd:simpleContent>
 <xsd:extension base="xsd:string">
 <xsd:attribute name="level"
 type="oval:MessageLevelEnumeration"
 use="optional" default="info"/>
 </xsd:extension>
 </xsd:simpleContent>
 </xsd:complexType>
 <xsd:complexType name="NotesType">
 <xsd:annotation>
 <xsd:documentation>The NotesType complex
 type is a container for one or more note
 child elements. Each note contains some
 information about the definition or tests
 that it references. A note may record an
 unresolved question about the definition
 or test or present the reason as to why a
 particular approach was
 taken.</xsd:documentation>
 </xsd:annotation>
 <xsd:sequence>
 <xsd:element name="note" type="xsd:string"
 minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>
 <!-- == -->
 <!-- ================ ENUMERATIONS ====================== -->
 <!-- == -->
 <xsd:simpleType name="CheckEnumeration">
 <xsd:annotation>
 <xsd:documentation>The CheckEnumeration
 simple type defines acceptable check
 values, which are used to determine the
 final result of something based on the
 results of individual components. When
 used to define the relationship between

Cokus, et al. Expires March 11, 2017 [Page 26]
�
Internet-Draft OVAL Common Model September 2016

 objects and states, each check value
 defines how many of the matching objects
 (items except those with a status of does
 not exist) must satisfy the given state
 for the test to return true. When used to
 define the relationship between instances
 of a given entity, the different check
 values defines how many instances must be
 true for the entity to return true. When
 used to define the relationship between
 entities and multiple variable values,
 each check value defines how many variable
 values must be true for the entity to
 return true.</xsd:documentation>
 <xsd:appinfo>
 <evaluation_documentation>Below are some
 tables that outline how each check
 attribute effects evaluation. The far
 left column identifies the check
 attribute in question. The middle column
 specifies the different combinations of
 individual results that the check
 attribute may bind together. (T=true,
 F=false, E=error, U=unknown, NE=not
 evaluated, NA=not applicable) For
 example, a 1+ under T means that one or
 more individual results are true, while
 a 0 under U means that zero individual
 results are unknown. The last column
 specifies what the final result would be
 according to each combination of
 individual results. Note that if the
 individual test is negated, then a true
 result is false and a false result is
 true, all other results stay as
 is.</evaluation_documentation>
 <evaluation_chart xml:space="preserve">
 || num of individual results ||
 check attr is || || final result is
 || T | F | E | U | NE | NA ||
 --------------||-----------------------------||-----------------
 || 1+ | 0 | 0 | 0 | 0 | 0+ || True
 || 0+ | 1+ | 0+ | 0+ | 0+ | 0+ || False
 ALL || 0+ | 0 | 1+ | 0+ | 0+ | 0+ || Error
 || 0+ | 0 | 0 | 1+ | 0+ | 0+ || Unknown
 || 0+ | 0 | 0 | 0 | 1+ | 0+ || Not Evaluated
 || 0 | 0 | 0 | 0 | 0 | 1+ || Not Applicable
 --------------||-----------------------------||-----------------

Cokus, et al. Expires March 11, 2017 [Page 27]
�
Internet-Draft OVAL Common Model September 2016

 </evaluation_chart>
 <evaluation_chart xml:space="preserve">
 || num of individual results ||
 check attr is || || final result is
 || T | F | E | U | NE | NA ||
 --------------||-----------------------------||-----------------
 || 1+ | 0+ | 0+ | 0+ | 0+ | 0+ || True
 || 0 | 1+ | 0 | 0 | 0 | 0+ || False
 AT LEAST ONE || 0 | 0+ | 1+ | 0+ | 0+ | 0+ || Error
 || 0 | 0+ | 0 | 1+ | 0+ | 0+ || Unknown
 || 0 | 0+ | 0 | 0 | 1+ | 0+ || Not Evaluated
 || 0 | 0 | 0 | 0 | 0 | 1+ || Not Applicable
 --------------||-----------------------------||-----------------
 </evaluation_chart>
 <evaluation_chart xml:space="preserve">
 || num of individual results ||
 check attr is || || final result is
 || T | F | E | U | NE | NA ||
 --------------||-----------------------------||-----------------
 || 1 | 0+ | 0 | 0 | 0 | 0+ || True
 || 2+ | 0+ | 0+ | 0+ | 0+ | 0+ || ** False **
 || 0 | 1+ | 0 | 0 | 0 | 0+ || ** False **
 ONLY ONE ||0,1 | 0+ | 1+ | 0+ | 0+ | 0+ || Error

 ||0,1 | 0+ | 0 | 1+ | 0+ | 0+ || Unknown
 ||0,1 | 0+ | 0 | 0 | 1+ | 0+ || Not Evaluated
 || 0 | 0 | 0 | 0 | 0 | 1+ || Not Applicable
 --------------||-----------------------------||-----------------
 </evaluation_chart>
 <evaluation_chart xml:space="preserve">
 || num of individual results ||
 check attr is || || final result is
 || T | F | E | U | NE | NA ||
 --------------||-----------------------------||-----------------
 || 0 | 1+ | 0 | 0 | 0 | 0+ || True
 || 1+ | 0+ | 0+ | 0+ | 0+ | 0+ || False
 NONE SATISFY || 0 | 0+ | 1+ | 0+ | 0+ | 0+ || Error
 || 0 | 0+ | 0 | 1+ | 0+ | 0+ || Unknown
 || 0 | 0+ | 0 | 0 | 1+ | 0+ || Not Evaluated
 || 0 | 0 | 0 | 0 | 0 | 1+ || Not Applicable
 --------------||-----------------------------||-----------------
 </evaluation_chart>
 </xsd:appinfo>
 </xsd:annotation>
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="all">
 <xsd:annotation>
 <xsd:documentation>A value of 'all'
 means that a final result of true is

Cokus, et al. Expires March 11, 2017 [Page 28]
�
Internet-Draft OVAL Common Model September 2016

 given if all the individual results
 under consideration are
 true.</xsd:documentation>
 </xsd:annotation>
 </xsd:enumeration>
 <xsd:enumeration value="at least one">
 <xsd:annotation>
 <xsd:documentation>A value of 'at least
 one' means that a final result of true
 is given if at least one of the
 individual results under consideration
 is true.</xsd:documentation>
 </xsd:annotation>
 </xsd:enumeration>
 <xsd:enumeration value="none exist">
 <xsd:annotation>
 <xsd:documentation>A value of 'none
 exists' means that a test evaluates to
 true if no matching object exists that
 satisfy the data
 requirements.</xsd:documentation>
 <xsd:appinfo>
 <oval:deprecated_info>
 <oval:version>5.3</oval:version>
 <oval:reason>Replaced by the 'none
 satisfy' value. In version 5.3 of
 the OVAL Language, the checking of
 existence and state were separated
 into two distinct checks
 CheckEnumeration (state) and
 ExistenceEnumeration (existence).
 Since CheckEnumeration is now used
 to specify how many objects should
 satisfy a given state for a test
 to return true, and no longer used
 for specifying how many objects
 must exist for a test to return
 true, a value of 'none exist' is
 no longer needed. See the 'none
 satisfy' value.</oval:reason>
 <oval:comment>This value has been
 deprecated and will be removed in
 version 6.0 of the
 language.</oval:comment>
 </oval:deprecated_info>
 <sch:pattern
 id="oval_none_exist_value_dep">
 <sch:rule

Cokus, et al. Expires March 11, 2017 [Page 29]
�
Internet-Draft OVAL Common Model September 2016

 context="oval-def:oval_definitions/
 oval-def:tests/child::*">
 <sch:report
 test="@check='none exist'">
 DEPRECATED ATTRIBUTE VALUE IN:
 <sch:value-of select="name()"
 /> ATTRIBUTE VALUE:
 </sch:report>
 </sch:rule>
 </sch:pattern>
 </xsd:appinfo>
 </xsd:annotation>
 </xsd:enumeration>
 <xsd:enumeration value="none satisfy">
 <xsd:annotation>
 <xsd:documentation>A value of 'none
 satisfy' means that a final result of
 true is given if none the individual
 results under consideration are
 true.</xsd:documentation>
 </xsd:annotation>
 </xsd:enumeration>
 <xsd:enumeration value="only one">
 <xsd:annotation>
 <xsd:documentation>A value of 'only one'
 means that a final result of true is
 given if one and only one of the
 individual results under consideration
 are true.</xsd:documentation>
 </xsd:annotation>
 </xsd:enumeration>
 </xsd:restriction>
 </xsd:simpleType>
 <xsd:simpleType name="ClassEnumeration">
 <xsd:annotation>
 <xsd:documentation>The ClassEnumeration
 simple type defines the different classes
 of definitions. Each class defines a
 certain intent regarding how an OVAL
 Definition is written and what that
 definition is describing. The specified
 class gives a hint about the definition so
 a user can know what the definition writer
 is trying to say. Note that the class does
 not make a statement about whether a true
 result is good or bad as this depends on
 the use of an OVAL Definition. These
 classes are also used to group definitions

Cokus, et al. Expires March 11, 2017 [Page 30]
�
Internet-Draft OVAL Common Model September 2016

 by the type of system state they are
 describing. For example, this allows users
 to find all the vulnerability (or patch,
 or inventory, etc)
 definitions.</xsd:documentation>
 </xsd:annotation>
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="compliance">
 <xsd:annotation>
 <xsd:documentation>A compliance
 definition describes the state of a
 machine as it complies with a specific
 policy. A definition of this class
 will evaluate to true when the system
 is found to be compliant with the
 stated policy. Another way of thinking
 about this is that a compliance

 definition is stating "the system is
 compliant if ...".</xsd:documentation>
 </xsd:annotation>
 </xsd:enumeration>
 <xsd:enumeration value="inventory">
 <xsd:annotation>
 <xsd:documentation>An inventory
 definition describes whether a
 specific piece of software is
 installed on the system. A definition
 of this class will evaluate to true
 when the specified software is found
 on the system. Another way of thinking
 about this is that an inventory
 definition is stating "the software is
 installed if ...".</xsd:documentation>
 </xsd:annotation>
 </xsd:enumeration>
 <xsd:enumeration value="miscellaneous">
 <xsd:annotation>
 <xsd:documentation>The 'miscellaneous'
 class is used to identify definitions
 that do not fall into any of the other
 defined classes.</xsd:documentation>
 </xsd:annotation>
 </xsd:enumeration>
 <xsd:enumeration value="patch">
 <xsd:annotation>
 <xsd:documentation>A patch definition
 details the machine state of whether a
 patch executable should be installed.

Cokus, et al. Expires March 11, 2017 [Page 31]
�
Internet-Draft OVAL Common Model September 2016

 A definition of this class will
 evaluate to true when the specified
 patch is missing from the system.
 Another way of thinking about this is
 that a patch definition is stating
 "the patch should be installed if
 ...". Note that word SHOULD is
 intended to mean more than just CAN
 the patch executable be installed. In
 other words, if a more recent patch is
 already installed then the specified
 patch might not need to be
 installed.</xsd:documentation>
 </xsd:annotation>
 </xsd:enumeration>
 <xsd:enumeration value="vulnerability">
 <xsd:annotation>
 <xsd:documentation>A vulnerability
 definition describes the conditions
 under which a machine is vulnerable. A
 definition of this class will evaluate
 to true when the system is found to be
 vulnerable with the stated issue.
 Another way of thinking about this is
 that a vulnerability definition is
 stating "the system is vulnerable if
 ...".</xsd:documentation>
 </xsd:annotation>
 </xsd:enumeration>
 </xsd:restriction>
 </xsd:simpleType>
 <xsd:simpleType name="SimpleDatatypeEnumeration">
 <xsd:annotation>
 <xsd:documentation>The
 SimpleDatatypeEnumeration simple type
 defines the legal datatypes that are used
 to describe the values of individual
 entities that can be represented in a XML
 string field. The value may have structure
 and a pattern, but it is represented as
 string content.</xsd:documentation>
 </xsd:annotation>

 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="binary">
 <xsd:annotation>
 <xsd:documentation>The binary datatype
 is used to represent hex-encoded data
 that is in raw (non-printable) form.

Cokus, et al. Expires March 11, 2017 [Page 32]
�
Internet-Draft OVAL Common Model September 2016

 This datatype conforms to the W3C
 Recommendation for binary data meaning
 that each binary octet is encoded as a
 character tuple, consisting of two
 hexadecimal digits {[0-9a-fA-F]}
 representing the octet code. Expected
 operations within OVAL for binary
 values are 'equals' and 'not
 equal'.</xsd:documentation>
 </xsd:annotation>
 </xsd:enumeration>
 <xsd:enumeration value="boolean">
 <xsd:annotation>
 <xsd:documentation>The boolean datatype
 represents standard boolean data,
 either true or false. This datatype
 conforms to the W3C Recommendation for
 boolean data meaning that the
 following literals are legal values:
 {true, false, 1, 0}. Expected
 operations within OVAL for boolean
 values are 'equals' and 'not
 equal'.</xsd:documentation>
 </xsd:annotation>
 </xsd:enumeration>
 <xsd:enumeration value="evr_string">
 <xsd:annotation>
 <xsd:documentation>The evr_string
 datatype represents the epoch,
 version, and release fields as a
 single version string. It has the form
 "EPOCH:VERSION-RELEASE". Comparisons
 involving this datatype should follow
 the algorithm of librpm's rpmvercmp()
 function. Expected operations within
 OVAL for evr_string values are
 'equals', 'not equal', 'greater than',
 'greater than or equal', 'less than',
 and 'less than or
 equal'.</xsd:documentation>
 </xsd:annotation>
 </xsd:enumeration>
 <xsd:enumeration value="debian_evr_string">
 <xsd:annotation>
 <xsd:documentation>The debian_evr_string
 datatype represents the epoch,
 upstream_version, and debian_revision
 fields, for a Debian package, as a

Cokus, et al. Expires March 11, 2017 [Page 33]
�
Internet-Draft OVAL Common Model September 2016

 single version string. It has the form
 "EPOCH:UPSTREAM_VERSION-DEBIAN_REVISION".
 Comparisons involving this datatype
 should follow the algorithm outlined
 in Chapter 5 of the "Debian Policy
 Manual"
 (https://www.debian.org/doc/debian-policy/
 ch-controlfields.html#s-f-Version).
 An implementation of this is the
 cmpversions() function in dpkg's
 enquiry.c. Expected operations within

 OVAL for debian_evr_string values are
 'equals', 'not equal', 'greater than',
 'greater than or equal', 'less than',
 and 'less than or
 equal'.</xsd:documentation>
 </xsd:annotation>
 </xsd:enumeration>
 <xsd:enumeration value="fileset_revision">
 <xsd:annotation>
 <xsd:documentation>The fileset_revision
 datatype represents the version string
 related to filesets in HP-UX. An
 example would be 'A.03.61.00'. For
 more information, see the HP-UX
 "Software Distributor Administration
 Guide"
 (http://h20000.www2.hp.com/bc/docs/
 support/SupportManual/c01919399/c01919399.pdf).
 Expected operations within OVAL for
 fileset_version values are 'equals',
 'not equal', 'greater than', 'greater
 than or equal', 'less than', and 'less
 than or equal'.</xsd:documentation>
 </xsd:annotation>
 </xsd:enumeration>
 <xsd:enumeration value="float">
 <xsd:annotation>
 <xsd:documentation>The float datatype
 describes standard float data. This
 datatype conforms to the W3C
 Recommendation for float data meaning
 it is patterned after the IEEE
 single-precision 32-bit floating point
 type. The format consists of a decimal
 followed, optionally, by the character
 'E' or 'e', followed by an integer
 exponent. The special values positive

Cokus, et al. Expires March 11, 2017 [Page 34]
�
Internet-Draft OVAL Common Model September 2016

 and negative infinity and not-a-number
 have are represented by INF, -INF and
 NaN, respectively. Expected operations
 within OVAL for float values are
 'equals', 'not equal', 'greater than',
 'greater than or equal', 'less than',
 and 'less than or
 equal'.</xsd:documentation>
 </xsd:annotation>
 </xsd:enumeration>
 <xsd:enumeration value="ios_version">
 <xsd:annotation>
 <xsd:documentation>The ios_version
 datatype describes Cisco IOS Train
 strings. These are in essence version
 strings for IOS. Please refer to
 Cisco's IOS Reference Guide for
 information on how to compare
 different Trains as they follow a very
 specific pattern. Expected operations
 within OVAL for ios_version values are
 'equals', 'not equal', 'greater than',
 'greater than or equal', 'less than',
 and 'less than or
 equal'.</xsd:documentation>
 </xsd:annotation>
 </xsd:enumeration>
 <xsd:enumeration value="int">
 <xsd:annotation>
 <xsd:documentation>The int datatype
 describes standard integer data. This
 datatype conforms to the W3C
 Recommendation for integer data which
 follows the standard mathematical
 concept of the integer numbers. (no
 decimal point and infinite range)

 Expected operations within OVAL for
 int values are 'equals', 'not equal',
 'greater than', 'greater than or
 equal', 'less than', 'less than or
 equal', 'bitwise and', and 'bitwise
 or'.</xsd:documentation>
 </xsd:annotation>
 </xsd:enumeration>
 <xsd:enumeration value="ipv4_address">
 <xsd:annotation>
 <xsd:documentation>The ipv4_address
 datatype represents IPv4 addresses and

Cokus, et al. Expires March 11, 2017 [Page 35]
�
Internet-Draft OVAL Common Model September 2016

 IPv4 address prefixes. Its value space
 consists of the set of ordered pairs
 of integers where the first element of
 each pair is in the range [0,2^32)
 (the representable range of a 32-bit
 unsigned int), and the second is in
 the range [0,32]. The first element is
 an address, and the second is a prefix
 length. </xsd:documentation>
 <xsd:documentation>The lexical space is
 dotted-quad CIDR-like notation
 ('a.b.c.d' where 'a', 'b', 'c', and
 'd' are integers from 0-255),
 optionally followed by a slash ('/')
 and either a prefix length (an integer
 from 0-32) or a netmask represented in
 the dotted-quad notation described
 previously. Examples of legal values
 are '192.0.2.0', '192.0.2.0/32', and
 '192.0.2.0/255.255.255.255'.
 Additionally, leading zeros are
 permitted such that '192.0.2.0' is
 equal to '192.000.002.000'. If a
 prefix length is not specified, it is
 implicitly equal to
 32.</xsd:documentation>
 <xsd:documentation>The expected
 operations within OVAL for
 ipv4_address values are 'equals', 'not
 equal', 'greater than', 'greater than
 or equal', 'less than', 'less than or
 equal', 'subset of', and 'superset
 of'. All operations are defined in
 terms of the value space. Let A and B
 be ipv4_address values (i.e. ordered
 pairs from the value space). The
 following definitions assume that bits
 outside the prefix have been zeroed
 out. By zeroing the low order bits,
 they are effectively ignored for all
 operations. Implementations of the
 following operations MUST behave as if
 this has been
 done.</xsd:documentation>
 <xsd:documentation>The following defines
 how to perform each operation for the
 ipv4_address datatype. Let P_addr mean
 the first element of ordered pair P

Cokus, et al. Expires March 11, 2017 [Page 36]
�
Internet-Draft OVAL Common Model September 2016

 and P_prefix mean the second
 element.</xsd:documentation>
 <xsd:documentation>equals: A equals B if
 and only if A_addr == B_addr and
 A_prefix ==

 B_prefix.</xsd:documentation>
 <xsd:documentation>not equal: A is not
 equal to B if and only if they don't
 satisfy the criteria for operator
 "equals".</xsd:documentation>
 <xsd:documentation>greater than: A is
 greater than B if and only if A_prefix
 == B_prefix and A_addr > B_addr. If
 A_prefix != B_prefix, i.e. prefix
 lengths are not equal, an error MUST
 be reported.</xsd:documentation>
 <xsd:documentation>greater than or
 equal: A is greater than or equal to B
 if and only if A_prefix == B_prefix
 and they satisfy either the criteria
 for operators "equal" or "greater
 than". If A_prefix != B_prefix, i.e.
 prefix lengths are not equal, an error
 MUST be reported.</xsd:documentation>
 <xsd:documentation>less than: A is less
 than B if and only if A_prefix ==
 B_prefix and they don't satisfy the
 criteria for operator "greater than or
 equal". If A_prefix != B_prefix, i.e.
 prefix lengths are not equal, an error
 MUST be reported.</xsd:documentation>
 <xsd:documentation>less than or equal: A
 is less than or equal to B if and only
 if A_prefix == B_prefix and they don't
 satisfy the criteria for operator
 "greater than". If A_prefix !=
 B_prefix, i.e. prefix lengths are not
 equal, an error MUST be
 reported.</xsd:documentation>
 <xsd:documentation>subset of: A is a
 subset of B if and only if every IPv4
 address in subnet A is present in
 subnet B. In other words, A_prefix >=
 B_prefix and the high B_prefix bits of
 A_addr and B_addr are
 equal.</xsd:documentation>
 <xsd:documentation>superset of: A is a
 superset of B if and only if B is a

Cokus, et al. Expires March 11, 2017 [Page 37]
�
Internet-Draft OVAL Common Model September 2016

 subset of A.</xsd:documentation>
 </xsd:annotation>
 </xsd:enumeration>
 <xsd:enumeration value="ipv6_address">
 <xsd:annotation>
 <xsd:documentation>The ipv6_address
 datatype represents IPv6 addresses and
 IPv6 address prefixes. Its value space
 consists of the set of ordered pairs
 of integers where the first element of
 each pair is in the range [0,2^128)
 (the representable range of a 128-bit
 unsigned int), and the second is in
 the range [0,128]. The first element
 is an address, and the second is a
 prefix length.</xsd:documentation>
 <xsd:documentation>The lexical space is
 CIDR notation given in IETF
 specification RFC 4291 for textual
 representations of IPv6 addresses and
 IPv6 address prefixes (see sections
 2.2 and 2.3). If a prefix-length is
 not specified, it is implicitly equal
 to 128.</xsd:documentation>
 <xsd:documentation>The expected
 operations within OVAL for
 ipv6_address values are 'equals', 'not
 equal', 'greater than', 'greater than
 or equal', 'less than', 'less than or
 equal', 'subset of', and 'superset

 of'. All operations are defined in
 terms of the value space. Let A and B
 be ipv6_address values (i.e. ordered
 pairs from the value space). The
 following definitions assume that bits
 outside the prefix have been zeroed
 out. By zeroing the low order bits,
 they are effectively ignored for all
 operations. Implementations of the
 following operations MUST behave as if
 this has been
 done.</xsd:documentation>
 <xsd:documentation>The following defines
 how to perform each operation for the
 ipv6_address datatype. Let P_addr mean
 the first element of ordered pair P
 and P_prefix mean the second
 element.</xsd:documentation>

Cokus, et al. Expires March 11, 2017 [Page 38]
�
Internet-Draft OVAL Common Model September 2016

 <xsd:documentation>equals: A equals B if
 and only if A_addr == B_addr and
 A_prefix ==
 B_prefix.</xsd:documentation>
 <xsd:documentation>not equal: A is not
 equal to B if and only if they don't
 satisfy the criteria for operator
 "equals".</xsd:documentation>
 <xsd:documentation>greater than: A is
 greater than B if and only if A_prefix
 == B_prefix and A_addr > B_addr. If
 A_prefix != B_prefix, an error MUST be
 reported.</xsd:documentation>
 <xsd:documentation>greater than or
 equal: A is greater than or equal to B
 if and only if A_prefix == B_prefix
 and they satisfy either the criteria
 for operators "equal" or "greater
 than". If A_prefix != B_prefix, an
 error MUST be
 reported.</xsd:documentation>
 <xsd:documentation>less than: A is less
 than B if and only if A_prefix ==
 B_prefix and they don't satisfy the
 criteria for operator "greater than or
 equal". If A_prefix != B_prefix, an
 error MUST be
 reported.</xsd:documentation>
 <xsd:documentation>less than or equal: A
 is less than or equal to B if and only
 if A_prefix == B_prefix and they don't
 satisfy the criteria for operator
 "greater than". If A_prefix !=
 B_prefix, an error MUST be
 reported.</xsd:documentation>
 <xsd:documentation>subset of: A is a
 subset of B if and only if every IPv6
 address in subnet A is present in
 subnet B. In other words, A_prefix >=
 B_prefix and the high B_prefix bits of
 A_addr and B_addr are
 equal.</xsd:documentation>
 <xsd:documentation>superset of: A is a
 superset of B if and only if B is a
 subset of A.</xsd:documentation>
 </xsd:annotation>
 </xsd:enumeration>
 <xsd:enumeration value="string">

Cokus, et al. Expires March 11, 2017 [Page 39]
�
Internet-Draft OVAL Common Model September 2016

 <xsd:annotation>
 <xsd:documentation>The string datatype
 describes standard string data. This
 datatype conforms to the W3C
 Recommendation for string data.
 Expected operations within OVAL for
 string values are 'equals', 'not
 equal', 'case insensitive equals',
 'case insensitive not equal', 'pattern
 match'.</xsd:documentation>
 </xsd:annotation>
 </xsd:enumeration>
 <xsd:enumeration value="version">
 <xsd:annotation>
 <xsd:documentation>The version datatype
 represents a value that is a
 hierarchical list of non-negative
 integers separated by a single
 character delimiter. Note that any
 non-number character can be used as a
 delimiter and that different
 characters can be used within the same
 version string. So '#.#-#' is the same
 as '#.#.#' or '#c#c#' where '#' is any
 non-negative integer. Expected
 operations within OVAL for version
 values are 'equals', 'not equal',
 'greater than', 'greater than or
 equal', 'less than', and 'less than or
 equal'.</xsd:documentation>
 <xsd:documentation>For example '#.#.#'
 or '#-#-#-#' where the numbers to the
 left are more significant than the
 numbers to the right. When performing
 an 'equals' operation on a version
 datatype, you should first check the
 left most number for equality. If that
 fails, then the values are not equal.
 If it succeeds, then check the second
 left most number for equality.
 Continue checking the numbers from
 left to right until the last number
 has been checked. If, after testing
 all the previous numbers, the last
 number is equal then the two versions
 are equal. When performing other
 operations, such as 'less than', 'less
 than or equal', 'greater than, or

Cokus, et al. Expires March 11, 2017 [Page 40]
�
Internet-Draft OVAL Common Model September 2016

 'greater than or equal', similar logic
 as above is used. Start with the left
 most number and move from left to
 right. For each number, check if it is
 less than the number you are testing
 against. If it is, then the version in
 question is less than the version you
 are testing against. If the number is
 equal, then move to check the next
 number to the right. For example, to
 test if 5.7.23 is less than or equal
 to 5.8.0 you first compare 5 to 5.
 They are equal so you move on to
 compare 7 to 8. 7 is less than 8 so
 the entire test succeeds and 5.7.23 is
 'less than or equal' to 5.8.0. The
 difference between the 'less than' and
 'less than or equal' operations is how
 the last number is handled. If the
 last number is reached, the check
 should use the given operation (either
 'less than' and 'less than or equal')
 to test the number. For example, to
 test if 4.23.6 is greater than 4.23.6

 you first compare 4 to 4. They are
 equal so you move on to compare 23 to
 23. They are equal so you move on to
 compare 6 to 6. This is the last
 number in the version and since 6 is
 not greater than 6, the entire test
 fails and 4.23.6 is not greater than
 4.23.6.</xsd:documentation>
 <xsd:documentation>Version strings with
 a different number of components shall
 be padded with zeros to make them the
 same size. For example, if the version
 strings '1.2.3' and '6.7.8.9' are
 being compared, then the short one
 should be padded to become
 '1.2.3.0'.</xsd:documentation>
 </xsd:annotation>
 </xsd:enumeration>
 </xsd:restriction>
 </xsd:simpleType>
 <xsd:simpleType
 name="ComplexDatatypeEnumeration">
 <xsd:annotation>
 <xsd:documentation>The

Cokus, et al. Expires March 11, 2017 [Page 41]
�
Internet-Draft OVAL Common Model September 2016

 ComplexDatatypeEnumeration simple type
 defines the complex legal datatypes that
 are supported in OVAL. These datatype
 describe the values of individual entities
 where the entity has some complex
 structure beyond simple string like
 content.</xsd:documentation>
 </xsd:annotation>
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="record">
 <xsd:annotation>
 <xsd:documentation>The record datatype
 describes an entity with structured
 set of named fields and values as its
 content. The only allowed operation
 within OVAL for record values is
 'equals'. Note that the record
 datatype is not currently allowed when
 using variables.</xsd:documentation>
 </xsd:annotation>
 </xsd:enumeration>
 </xsd:restriction>
 </xsd:simpleType>
 <xsd:simpleType name="DatatypeEnumeration">
 <xsd:annotation>
 <xsd:documentation>The DatatypeEnumeration
 simple type defines the legal datatypes
 that are used to describe the values of
 individual entities. A value should be
 interpreted according to the specified
 type. This is most important during
 comparisons. For example, is '21' less
 than '123'? will evaluate to true if the
 datatypes are 'int', but will evaluate to
 'false' if the datatypes are 'string'.
 Another example is applying the 'equal'
 operation to '1.0.0.0' and '1.0'. With
 datatype 'string' they are not equal, with
 datatype 'version' they
 are.</xsd:documentation>
 </xsd:annotation>
 <xsd:union
 memberTypes="oval:SimpleDatatypeEnumeration
 oval:ComplexDatatypeEnumeration"
 />
 </xsd:simpleType>
 <xsd:simpleType name="ExistenceEnumeration">
 <xsd:annotation>

Cokus, et al. Expires March 11, 2017 [Page 42]
�
Internet-Draft OVAL Common Model September 2016

 <xsd:documentation>The ExistenceEnumeration
 simple type defines acceptable existence
 values, which are used to determine a
 result based on the existence of
 individual components. The main use for
 this is for a test regarding the existence
 of objects on the
 system.</xsd:documentation>
 <xsd:appinfo>
 <evaluation_documentation>Below are some
 tables that outline how each
 ExistenceEnumeration value effects
 evaluation of a given test. Note that
 this is related to the existence of an
 object(s) and not the object(s)
 compliance with a state. The left column
 identifies the ExistenceEnumeration
 value in question. The middle column
 specifies the different combinations of
 individual item status values that have
 been found in the system characteristics
 file related to the given object.
 (EX=exists, DE=does not exist, ER=error,
 NC=not collected) For example, a 1+
 under EX means that one or more
 individual item status attributes are
 set to exists, while a 0 under NC means
 that zero individual item status
 attributes are set to not collected. The
 last column specifies what the result of
 the existence piece would be according
 to each combination of individual item
 status
 values.</evaluation_documentation>
 <evaluation_chart xml:space="preserve">
 || item status value count ||
 attr value || || existence
 || EX | DE | ER | NC || piece is
 ---------------||---------------------------||------------------
 || 1+ | 0 | 0 | 0 || True
 || 0 | 0 | 0 | 0 || False
 || 0+ | 1+ | 0+ | 0+ || False
 all_exist || 0+ | 0 | 1+ | 0+ || Error
 || 0+ | 0 | 0 | 1+ || Unknown
 || -- | -- | -- | -- || Not Evaluated
 || -- | -- | -- | -- || Not Applicable
 ---------------||---------------------------||------------------
 </evaluation_chart>

Cokus, et al. Expires March 11, 2017 [Page 43]
�
Internet-Draft OVAL Common Model September 2016

 <evaluation_chart xml:space="preserve">
 || item status value count ||
 attr value || || existence
 || EX | DE | ER | NC || piece is
 ---------------||---------------------------||------------------
 || 0+ | 0+ | 0 | 0+ || True
 || 1+ | 0+ | 1+ | 0+ || True
 || -- | -- | -- | -- || False
 any_exist || 0 | 0+ | 1+ | 0+ || Error
 || -- | -- | -- | -- || Unknown
 || -- | -- | -- | -- || Not Evaluated
 || -- | -- | -- | -- || Not Applicable
 ---------------||---------------------------||------------------
 </evaluation_chart>
 <evaluation_chart xml:space="preserve">
 || item status value count ||
 attr value || || existence
 || EX | DE | ER | NC || piece is

 ---------------||---------------------------||------------------
 || 1+ | 0+ | 0+ | 0+ || True
 || 0 | 1+ | 0 | 0 || False
 at_least_ || 0 | 0+ | 1+ | 0+ || Error
 one_exists || 0 | 0+ | 0 | 1+ || Unknown
 || -- | -- | -- | -- || Not Evaluated
 || -- | -- | -- | -- || Not Applicable
 ---------------||---------------------------||------------------
 </evaluation_chart>
 <evaluation_chart xml:space="preserve">
 || item status value count ||
 attr value || || existence
 || EX | DE | ER | NC || piece is
 ---------------||---------------------------||------------------
 || 0 | 0+ | 0 | 0 || True
 || 1+ | 0+ | 0+ | 0+ || False
 none_exist || 0 | 0+ | 1+ | 0+ || Error
 || 0 | 0+ | 0 | 1+ || Unknown
 || -- | -- | -- | -- || Not Evaluated
 || -- | -- | -- | -- || Not Applicable
 ---------------||---------------------------||------------------
 </evaluation_chart>
 <evaluation_chart xml:space="preserve">
 || item status value count ||
 attr value || || existence
 || EX | DE | ER | NC || piece is
 ---------------||---------------------------||------------------
 || 1 | 0+ | 0 | 0 || True
 || 2+ | 0+ | 0+ | 0+ || False
 || 0 | 0+ | 0 | 0 || False

Cokus, et al. Expires March 11, 2017 [Page 44]
�
Internet-Draft OVAL Common Model September 2016

 only_one_ || 0,1 | 0+ | 1+ | 0+ || Error
 exists || 0,1 | 0+ | 0 | 1+ || Unknown
 || -- | -- | -- | -- || Not Evaluated
 || -- | -- | -- | -- || Not Applicable
 ---------------||---------------------------||------------------
 </evaluation_chart>
 </xsd:appinfo>
 </xsd:annotation>
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="all_exist">
 <xsd:annotation>
 <xsd:documentation>A value of
 'all_exist' means that every object
 defined by the description exists on
 the system.</xsd:documentation>
 </xsd:annotation>
 </xsd:enumeration>
 <xsd:enumeration value="any_exist">
 <xsd:annotation>
 <xsd:documentation>A value of
 'any_exist' means that zero or more
 objects defined by the description
 exist on the
 system.</xsd:documentation>
 </xsd:annotation>
 </xsd:enumeration>
 <xsd:enumeration value="at_least_one_exists">
 <xsd:annotation>
 <xsd:documentation>A value of
 'at_least_one_exists' means that at
 least one object defined by the
 description exists on the
 system.</xsd:documentation>
 </xsd:annotation>
 </xsd:enumeration>
 <xsd:enumeration value="none_exist">
 <xsd:annotation>
 <xsd:documentation>A value of
 'none_exist' means that none of the
 objects defined by the description
 exist on the
 system.</xsd:documentation>
 </xsd:annotation>

 </xsd:enumeration>
 <xsd:enumeration value="only_one_exists">
 <xsd:annotation>
 <xsd:documentation>A value of
 'only_one_exists' means that only one

Cokus, et al. Expires March 11, 2017 [Page 45]
�
Internet-Draft OVAL Common Model September 2016

 object defined by the description
 exists on the
 system.</xsd:documentation>
 </xsd:annotation>
 </xsd:enumeration>
 </xsd:restriction>
 </xsd:simpleType>
 <xsd:simpleType name="FamilyEnumeration">
 <xsd:annotation>
 <xsd:documentation>The FamilyEnumeration
 simple type is a listing of families that
 OVAL supports at this time. Since new
 family values can only be added with new
 version of the schema, the value of
 'undefined' is to be used when the desired
 family is not available. Note that use of
 the undefined family value does not target
 all families, rather it means that some
 family other than one of the defined
 values is targeted.</xsd:documentation>
 </xsd:annotation>
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="android">
 <xsd:annotation>
 <xsd:documentation>The android value
 describes the Android mobile operating
 system.</xsd:documentation>
 </xsd:annotation>
 </xsd:enumeration>
 <xsd:enumeration value="asa">
 <xsd:annotation>
 <xsd:documentation>The asa value
 describes the Cisco ASA security
 devices.</xsd:documentation>
 </xsd:annotation>
 </xsd:enumeration>
 <xsd:enumeration value="apple_ios">
 <xsd:annotation>
 <xsd:documentation>The apple_ios value
 describes the iOS mobile operating
 system.</xsd:documentation>
 </xsd:annotation>
 </xsd:enumeration>
 <xsd:enumeration value="catos">
 <xsd:annotation>
 <xsd:documentation>The catos value
 describes the Cisco CatOS operating
 system.</xsd:documentation>

Cokus, et al. Expires March 11, 2017 [Page 46]
�
Internet-Draft OVAL Common Model September 2016

 </xsd:annotation>
 </xsd:enumeration>
 <xsd:enumeration value="ios">
 <xsd:annotation>
 <xsd:documentation>The ios value
 describes the Cisco IOS operating
 system.</xsd:documentation>
 </xsd:annotation>
 </xsd:enumeration>
 <xsd:enumeration value="iosxe">
 <xsd:annotation>
 <xsd:documentation>The iosxe value

 describes the Cisco IOS XE operating
 system.</xsd:documentation>
 </xsd:annotation>
 </xsd:enumeration>
 <xsd:enumeration value="junos">
 <xsd:annotation>
 <xsd:documentation>The junos value
 describes the Juniper JunOS operating
 system.</xsd:documentation>
 </xsd:annotation>
 </xsd:enumeration>
 <xsd:enumeration value="macos">
 <xsd:annotation>
 <xsd:documentation>The macos value
 describes the Mac operating
 system.</xsd:documentation>
 </xsd:annotation>
 </xsd:enumeration>
 <xsd:enumeration value="pixos">
 <xsd:annotation>
 <xsd:documentation>The pixos value
 describes the Cisco PIX operating
 system.</xsd:documentation>
 </xsd:annotation>
 </xsd:enumeration>
 <xsd:enumeration value="undefined">
 <xsd:annotation>
 <xsd:documentation>The undefined value
 is to be used when the desired family
 is not available.</xsd:documentation>
 </xsd:annotation>
 </xsd:enumeration>
 <xsd:enumeration value="unix">
 <xsd:annotation>
 <xsd:documentation>The unix value
 describes the UNIX operating

Cokus, et al. Expires March 11, 2017 [Page 47]
�
Internet-Draft OVAL Common Model September 2016

 system.</xsd:documentation>
 </xsd:annotation>
 </xsd:enumeration>
 <xsd:enumeration
 value="vmware_infrastructure">
 <xsd:annotation>
 <xsd:documentation>The
 vmware_infrastructure value describes
 VMWare
 Infrastructure.</xsd:documentation>
 </xsd:annotation>
 </xsd:enumeration>
 <xsd:enumeration value="windows">
 <xsd:annotation>
 <xsd:documentation>The windows value
 describes the Microsoft Windows
 operating system.</xsd:documentation>
 </xsd:annotation>
 </xsd:enumeration>
 </xsd:restriction>
 </xsd:simpleType>
 <xsd:simpleType name="MessageLevelEnumeration">
 <xsd:annotation>
 <xsd:documentation>The
 MessageLevelEnumeration simple type
 defines the different levels associated
 with a message. There is no specific
 criteria about which messages get assigned
 which level. This is completely arbitrary
 and up to the content producer to decide
 what is an error message and what is a
 debug message.</xsd:documentation>
 </xsd:annotation>
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="debug">
 <xsd:annotation>
 <xsd:documentation>Debug messages should

 only be displayed by a tool when run
 in some sort of verbose
 mode.</xsd:documentation>
 </xsd:annotation>
 </xsd:enumeration>
 <xsd:enumeration value="error">
 <xsd:annotation>
 <xsd:documentation>Error messages should
 be recorded when there was an error
 that did not allow the collection of
 specific data.</xsd:documentation>

Cokus, et al. Expires March 11, 2017 [Page 48]
�
Internet-Draft OVAL Common Model September 2016

 </xsd:annotation>
 </xsd:enumeration>
 <xsd:enumeration value="fatal">
 <xsd:annotation>
 <xsd:documentation>A fatal message
 should be recorded when an error
 causes the failure of more than just a
 single piece of
 data.</xsd:documentation>
 </xsd:annotation>
 </xsd:enumeration>
 <xsd:enumeration value="info">
 <xsd:annotation>
 <xsd:documentation>Info messages are
 used to pass useful information about
 the data collection to a
 user.</xsd:documentation>
 </xsd:annotation>
 </xsd:enumeration>
 <xsd:enumeration value="warning">
 <xsd:annotation>
 <xsd:documentation>A warning message
 reports something that might not
 correct but information was still
 collected.</xsd:documentation>
 </xsd:annotation>
 </xsd:enumeration>
 </xsd:restriction>
 </xsd:simpleType>
 <xsd:simpleType name="OperationEnumeration">
 <xsd:annotation>
 <xsd:documentation>The OperationEnumeration
 simple type defines acceptable operations.
 Each operation defines how to compare
 entities against their actual
 values.</xsd:documentation>
 </xsd:annotation>
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="equals">
 <xsd:annotation>
 <xsd:documentation>The 'equals'
 operation returns true if the actual
 value on the system is equal to the
 stated entity. When the specified
 datatype is a string, this results in
 a case-sensitive
 comparison.</xsd:documentation>
 </xsd:annotation>

Cokus, et al. Expires March 11, 2017 [Page 49]
�
Internet-Draft OVAL Common Model September 2016

 </xsd:enumeration>
 <xsd:enumeration value="not equal">
 <xsd:annotation>
 <xsd:documentation>The 'not equal'
 operation returns true if the actual
 value on the system is not equal to

 the stated entity. When the specified
 datatype is a string, this results in
 a case-sensitive
 comparison.</xsd:documentation>
 </xsd:annotation>
 </xsd:enumeration>
 <xsd:enumeration
 value="case insensitive equals">
 <xsd:annotation>
 <xsd:documentation>The 'case insensitive
 equals' operation is meant for string
 data and returns true if the actual
 value on the system is equal (using a
 case insensitive comparison) to the
 stated entity.</xsd:documentation>
 </xsd:annotation>
 </xsd:enumeration>
 <xsd:enumeration
 value="case insensitive not equal">
 <xsd:annotation>
 <xsd:documentation>The 'case insensitive
 not equal' operation is meant for
 string data and returns true if the
 actual value on the system is not
 equal (using a case insensitive
 comparison) to the stated
 entity.</xsd:documentation>
 </xsd:annotation>
 </xsd:enumeration>
 <xsd:enumeration value="greater than">
 <xsd:annotation>
 <xsd:documentation>The 'greater than'
 operation returns true if the actual
 value on the system is greater than
 the stated entity.</xsd:documentation>
 </xsd:annotation>
 </xsd:enumeration>
 <xsd:enumeration value="less than">
 <xsd:annotation>
 <xsd:documentation>The 'less than'
 operation returns true if the actual
 value on the system is less than the

Cokus, et al. Expires March 11, 2017 [Page 50]
�
Internet-Draft OVAL Common Model September 2016

 stated entity.</xsd:documentation>
 </xsd:annotation>
 </xsd:enumeration>
 <xsd:enumeration
 value="greater than or equal">
 <xsd:annotation>
 <xsd:documentation>The 'greater than or
 equal' operation returns true if the
 actual value on the system is greater
 than or equal to the stated
 entity.</xsd:documentation>
 </xsd:annotation>
 </xsd:enumeration>
 <xsd:enumeration value="less than or equal">
 <xsd:annotation>
 <xsd:documentation>The 'less than or
 equal' operation returns true if the
 actual value on the system is less
 than or equal to the stated
 entity.</xsd:documentation>
 </xsd:annotation>
 </xsd:enumeration>
 <xsd:enumeration value="bitwise and">
 <xsd:annotation>
 <xsd:documentation>The 'bitwise and'
 operation is used to determine if a
 specific bit is set. It returns true
 if performing a BITWISE AND with the
 binary representation of the stated
 entity against the binary
 representation of the actual value on

 the system results in a binary value
 that is equal to the binary
 representation of the stated entity.
 For example, assuming a datatype of
 'int', if the actual integer value of
 the setting on your machine is 6 (same
 as 0110 in binary), then performing a
 'bitwise and' with the stated integer
 4 (0100) returns 4 (0100). Since the
 result is the same as the state mask,
 then the test returns true. If the
 actual value on your machine is 1
 (0001), then the 'bitwise and' with
 the stated integer 4 (0100) returns 0
 (0000). Since the result is not the
 same as the stated mask, then the test
 fails.</xsd:documentation>

Cokus, et al. Expires March 11, 2017 [Page 51]
�
Internet-Draft OVAL Common Model September 2016

 </xsd:annotation>
 </xsd:enumeration>
 <xsd:enumeration value="bitwise or">
 <xsd:annotation>
 <xsd:documentation>The 'bitwise or'
 operation is used to determine if a
 specific bit is not set. It returns
 true if performing a BITWISE OR with
 the binary representation of the
 stated entity against the binary
 representation of the actual value on
 the system results in a binary value
 that is equal to the binary
 representation of the stated entity.
 For example, assuming a datatype of
 'int', if the actual integer value of
 the setting on your machine is 6 (same
 as 0110 in binary), then performing a
 'bitwise or' with the stated integer
 14 (1110) returns 14 (1110). Since the
 result is the same as the state mask,
 then the test returns true. If the
 actual value on your machine is 1
 (0001), then the 'bitwise or' with the
 stated integer 14 (1110) returns 15
 (1111). Since the result is not the
 same as the stated mask, then the test
 fails.</xsd:documentation>
 </xsd:annotation>
 </xsd:enumeration>
 <xsd:enumeration value="pattern match">
 <xsd:annotation>
 <xsd:documentation>The 'pattern match'
 operation allows an item to be tested
 against a regular expression. When
 used by an entity in an OVAL Object,
 the regular expression represents the
 unique set of matching items on the
 system. OVAL supports a common subset
 of the regular expression character
 classes, operations, expressions and
 other lexical tokens defined within
 Perl 5's regular expression
 specification. For more information on
 the supported regular expression
 syntax in OVAL see:
 http://oval.mitre.org/language/
 about/re_support_5.6.html</xsd:documentation>

Cokus, et al. Expires March 11, 2017 [Page 52]
�
Internet-Draft OVAL Common Model September 2016

 </xsd:annotation>
 </xsd:enumeration>
 <xsd:enumeration value="subset of">
 <xsd:annotation>
 <xsd:documentation>The 'subset of'
 operation returns true if the actual
 set on the system is a subset of the
 set defined by the stated
 entity.</xsd:documentation>
 </xsd:annotation>
 </xsd:enumeration>
 <xsd:enumeration value="superset of">
 <xsd:annotation>
 <xsd:documentation>The 'superset of'
 operation returns true if the actual
 set on the system is a superset of the
 set defined by the stated
 entity.</xsd:documentation>
 </xsd:annotation>
 </xsd:enumeration>
 </xsd:restriction>
 </xsd:simpleType>
 <xsd:simpleType name="OperatorEnumeration">
 <xsd:annotation>
 <xsd:documentation>The OperatorEnumeration
 simple type defines acceptable operators.
 Each operator defines how to evaluate
 multiple arguments.</xsd:documentation>
 <xsd:appinfo>
 <evaluation_documentation>Below are some
 tables that outline how each operator
 effects evaluation. The far left column
 identifies the operator in question. The
 middle column specifies the different
 combinations of individual results that
 the operator may bind together. (T=true,
 F=false, E=error, U=unknown, NE=not
 evaluated, NA=not applicable) For
 example, a 1+ under T means that one or
 more individual results are true, while
 a 0 under U means that zero individual
 results are unknown. The last column
 specifies what the final result would be
 according to each combination of
 individual results. Note that if the
 individual test is negated, then a true
 result is false and a false result is
 true, all other results stay as

Cokus, et al. Expires March 11, 2017 [Page 53]
�
Internet-Draft OVAL Common Model September 2016

 is.</evaluation_documentation>
 <evaluation_chart xml:space="preserve">
 || num of individual results ||
 operator is || || final result is
 || T | F | E | U | NE | NA ||
 -------------||-----------------------------||------------------
 || 1+ | 0 | 0 | 0 | 0 | 0+ || True
 || 0+ | 1+ | 0+ | 0+ | 0+ | 0+ || False
 AND || 0+ | 0 | 1+ | 0+ | 0+ | 0+ || Error
 || 0+ | 0 | 0 | 1+ | 0+ | 0+ || Unknown
 || 0+ | 0 | 0 | 0 | 1+ | 0+ || Not Evaluated
 || 0 | 0 | 0 | 0 | 0 | 1+ || Not Applicable
 -------------||-----------------------------||------------------
 </evaluation_chart>
 <evaluation_chart xml:space="preserve">
 || num of individual results ||
 operator is || || final result is
 || T | F | E | U | NE | NA ||
 -------------||-----------------------------||------------------
 || 1 | 0+ | 0 | 0 | 0 | 0+ || True
 || 2+ | 0+ | 0+ | 0+ | 0+ | 0+ || ** False **
 || 0 | 1+ | 0 | 0 | 0 | 0+ || ** False **
 ONE ||0,1 | 0+ | 1+ | 0+ | 0+ | 0+ || Error
 ||0,1 | 0+ | 0 | 1+ | 0+ | 0+ || Unknown
 ||0,1 | 0+ | 0 | 0 | 1+ | 0+ || Not Evaluated

 || 0 | 0 | 0 | 0 | 0 | 1+ || Not Applicable
 -------------||-----------------------------||------------------
 </evaluation_chart>
 <evaluation_chart xml:space="preserve">
 || num of individual results ||
 operator is || || final result is
 || T | F | E | U | NE | NA ||
 -------------||-----------------------------||------------------
 || 1+ | 0+ | 0+ | 0+ | 0+ | 0+ || True
 || 0 | 1+ | 0 | 0 | 0 | 0+ || False
 OR || 0 | 0+ | 1+ | 0+ | 0+ | 0+ || Error
 || 0 | 0+ | 0 | 1+ | 0+ | 0+ || Unknown
 || 0 | 0+ | 0 | 0 | 1+ | 0+ || Not Evaluated
 || 0 | 0 | 0 | 0 | 0 | 1+ || Not Applicable
 -------------||-----------------------------||------------------
 </evaluation_chart>
 <evaluation_chart xml:space="preserve">
 || num of individual results ||
 operator is || || final result is
 || T | F | E | U | NE | NA ||
 -------------||-----------------------------||------------------
 ||odd | 0+ | 0 | 0 | 0 | 0+ || True
 ||even| 0+ | 0 | 0 | 0 | 0+ || False

Cokus, et al. Expires March 11, 2017 [Page 54]
�
Internet-Draft OVAL Common Model September 2016

 XOR || 0+ | 0+ | 1+ | 0+ | 0+ | 0+ || Error
 || 0+ | 0+ | 0 | 1+ | 0+ | 0+ || Unknown
 || 0+ | 0+ | 0 | 0 | 1+ | 0+ || Not Evaluated
 || 0 | 0 | 0 | 0 | 0 | 1+ || Not Applicable
 -------------||-----------------------------||------------------
 </evaluation_chart>
 </xsd:appinfo>
 </xsd:annotation>
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="AND">
 <xsd:annotation>
 <xsd:documentation>The AND operator
 produces a true result if every
 argument is true. If one or more
 arguments are false, the result of the
 AND is false. If one or more of the
 arguments are unknown, and if none of
 the arguments are false, then the AND
 operator produces a result of
 unknown.</xsd:documentation>
 </xsd:annotation>
 </xsd:enumeration>
 <xsd:enumeration value="ONE">
 <xsd:annotation>
 <xsd:documentation>The ONE operator
 produces a true result if one and only
 one argument is true. If there are
 more than argument is true (or if
 there are no true arguments), the
 result of the ONE is false. If one or
 more of the arguments are unknown,
 then the ONE operator produces a
 result of unknown.</xsd:documentation>
 </xsd:annotation>
 </xsd:enumeration>
 <xsd:enumeration value="OR">
 <xsd:annotation>
 <xsd:documentation>The OR operator
 produces a true result if one or more
 arguments is true. If every argument
 is false, the result of the OR is
 false. If one or more of the arguments
 are unknown and if none of arguments
 are true, then the OR operator
 produces a result of
 unknown.</xsd:documentation>
 </xsd:annotation>
 </xsd:enumeration>

Cokus, et al. Expires March 11, 2017 [Page 55]
�
Internet-Draft OVAL Common Model September 2016

 <xsd:enumeration value="XOR">
 <xsd:annotation>
 <xsd:documentation>XOR is defined to be
 true if an odd number of its arguments
 are true, and false otherwise. If any
 of the arguments are unknown, then the
 XOR operator produces a result of
 unknown.</xsd:documentation>
 </xsd:annotation>
 </xsd:enumeration>
 </xsd:restriction>
 </xsd:simpleType>
 <!-- == -->
 <!-- ================= ID PATTERNS ====================== -->
 <!-- == -->
 <xsd:simpleType name="DefinitionIDPattern">
 <xsd:annotation>
 <xsd:documentation>Define the format for
 acceptable OVAL Definition ids. An urn
 format is used with the id starting with
 the word oval followed by a unique string,
 followed by the three letter code 'def',
 and ending with an
 integer.</xsd:documentation>
 </xsd:annotation>
 <xsd:restriction base="xsd:string">
 <xsd:pattern
 value="oval:[A-Za-z0-9_\-\.]+:def:[1-9][0-9]*"
 />
 </xsd:restriction>
 </xsd:simpleType>
 <xsd:simpleType name="ObjectIDPattern">
 <xsd:annotation>
 <xsd:documentation>Define the format for
 acceptable OVAL Object ids. An urn format
 is used with the id starting with the word
 oval followed by a unique string, followed
 by the three letter code 'obj', and ending
 with an integer.</xsd:documentation>
 </xsd:annotation>
 <xsd:restriction base="xsd:string">
 <xsd:pattern
 value="oval:[A-Za-z0-9_\-\.]+:obj:[1-9][0-9]*"
 />
 </xsd:restriction>
 </xsd:simpleType>
 <xsd:simpleType name="StateIDPattern">
 <xsd:annotation>

Cokus, et al. Expires March 11, 2017 [Page 56]
�
Internet-Draft OVAL Common Model September 2016

 <xsd:documentation>Define the format for
 acceptable OVAL State ids. An urn format
 is used with the id starting with the word
 oval followed by a unique string, followed
 by the three letter code 'ste', and ending
 with an integer.</xsd:documentation>
 </xsd:annotation>
 <xsd:restriction base="xsd:string">
 <xsd:pattern
 value="oval:[A-Za-z0-9_\-\.]+:ste:[1-9][0-9]*"
 />
 </xsd:restriction>
 </xsd:simpleType>
 <xsd:simpleType name="TestIDPattern">
 <xsd:annotation>
 <xsd:documentation>Define the format for
 acceptable OVAL Test ids. An urn format is
 used with the id starting with the word
 oval followed by a unique string, followed

 by the three letter code 'tst', and ending
 with an integer.</xsd:documentation>
 </xsd:annotation>
 <xsd:restriction base="xsd:string">
 <xsd:pattern
 value="oval:[A-Za-z0-9_\-\.]+:tst:[1-9][0-9]*"
 />
 </xsd:restriction>
 </xsd:simpleType>
 <xsd:simpleType name="VariableIDPattern">
 <xsd:annotation>
 <xsd:documentation>Define the format for
 acceptable OVAL Variable ids. An urn
 format is used with the id starting with
 the word oval followed by a unique string,
 followed by the three letter code 'var',
 and ending with an
 integer.</xsd:documentation>
 </xsd:annotation>
 <xsd:restriction base="xsd:string">
 <xsd:pattern
 value="oval:[A-Za-z0-9_\-\.]+:var:[1-9][0-9]*"
 />
 </xsd:restriction>
 </xsd:simpleType>
 <xsd:simpleType name="ItemIDPattern">
 <xsd:annotation>
 <xsd:documentation>Define the format for
 acceptable OVAL Item ids. The format is an

Cokus, et al. Expires March 11, 2017 [Page 57]
�
Internet-Draft OVAL Common Model September 2016

 integer. An item id is used to identify
 the different items found in an OVAL
 System Characteristics
 file.</xsd:documentation>
 </xsd:annotation>
 <xsd:restriction base="xsd:integer"/>
 </xsd:simpleType>
 <xsd:simpleType name="SchemaVersionPattern">
 <xsd:annotation>
 <xsd:documentation>Define the format for
 acceptable OVAL Language version
 strings.</xsd:documentation>
 </xsd:annotation>
 <xsd:restriction base="xsd:string">
 <xsd:pattern
 value=
 "[0-9]+\.[0-9]+(\.[0-9]+)?
 (:[0-9]+\.[0-9]+(\.[0-9]+)?)?"
 />
 </xsd:restriction>
 </xsd:simpleType>
 <!-- == -->
 <!-- ================= OTHER TYPES ====================== -->
 <!-- == -->
 <xsd:simpleType name="EmptyStringType">
 <xsd:annotation>
 <xsd:documentation>The EmptyStringType
 simple type is a restriction of the
 built-in string simpleType. The only
 allowed string is the empty string with a
 length of zero. This type is used by
 certain elements to allow empty content
 when non-string data is accepted. See the
 EntityIntType in the OVAL Definition
 Schema for an example of its
 use.</xsd:documentation>
 </xsd:annotation>
 <xsd:restriction base="xsd:string">
 <xsd:maxLength value="0"/>
 </xsd:restriction>
 </xsd:simpleType>
 <xsd:simpleType name="NonEmptyStringType">
 <xsd:annotation>
 <xsd:documentation>The NonEmptyStringType

 simple type is a restriction of the
 built-in string simpleType. Empty strings
 are not allowed. This type is used by
 comment attributes where an empty value is

Cokus, et al. Expires March 11, 2017 [Page 58]
�
Internet-Draft OVAL Common Model September 2016

 not allowed.</xsd:documentation>
 </xsd:annotation>
 <xsd:restriction base="xsd:string">
 <xsd:minLength value="1"/>
 </xsd:restriction>
 </xsd:simpleType>
 <!-- == -->
 <!-- == -->
 <!-- == -->
 </xsd:schema>

21. Intellectual Property Considerations

 Copyright (C) 2010 United States Government. All Rights Reserved.

 DHS, on behalf of the United States, owns the registered OVAL
 trademarks, identifying the OVAL STANDARDS SUITE and any component
 part, as that suite has been provided to the IETF Trust. A "(R)"
 will be used in conjunction with the first use of any OVAL trademark
 in any document or publication in recognition of DHS's trademark
 ownership.

22. Acknowledgements

 The authors wish to thank DHS for sponsoring the OVAL effort over the
 years which has made this work possible. The authors also wish to
 thank the original authors of this document Jonathan Baker, Matthew
 Hansbury, and Daniel Haynes of the MITRE Corporation as well as the
 OVAL Community for its assistance in contributing and reviewing the
 original document. The authors would also like to acknowledge Dave
 Waltermire of NIST for his contribution to the development of the
 original document.

23. IANA Considerations

 This memo includes no request to IANA.

24. Security Considerations

 While OVAL is just a set of data models and does not directly
 introduce security concerns, it does provide a mechanism by which to
 represent endpoint posture assessment information. This information
 could be extremely valuable to an attacker allowing them to learn
 about very sensitive information including, but, not limited to:
 security policies, systems on the network, criticality of systems,
 software and hardware inventory, patch levels, user accounts and much
 more. To address this concern, all endpoint posture assessment

Cokus, et al. Expires March 11, 2017 [Page 59]
�
Internet-Draft OVAL Common Model September 2016

 information should be protected while in transit and at rest.
 Furthermore, it should only be shared with parties that are
 authorized to receive it.

 Another possible security concern is due to the fact that content
 expressed as OVAL has the ability to impact how a security tool
 operates. For example, content may instruct a tool to collect
 certain information off a system or may be used to drive follow-up
 actions like remediation. As a result, it is important for security
 tools to ensure that they are obtaining OVAL content from a trusted
 source, that it has not been modified in transit, and that proper
 validation is performed in order to ensure it does not contain
 malicious data.

25. Change Log

25.1. -00 to -01

 There are no textual changes associated with this revision. This
 revision simply reflects a resubmission of the document so that it
 remains in active status.

26. References

26.1. Normative References

 [CISCO-IOS]
 CISCO, "Cisco IOS Reference Manual", 2014,
 <http://www.cisco.com/web/about/security/intelligence/
 ios-ref.html>.

 [DEBIAN-POLICY-MANUAL]
 Debian, "Debian Policy Manual", 2014,
 <https://www.debian.org/doc/debian-policy/ch-
 controlfields.html#s-f-Version>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC4291] Hinden, R. and S. Deering, "IP Version 6 Addressing
 Architecture", RFC 4291, DOI 10.17487/RFC4291, February
 2006, <http://www.rfc-editor.org/info/rfc4291>.

 [RFC791] IETF, "Internet Protocol", 1981,
 <https://tools.ietf.org/html/rfc791>.

Cokus, et al. Expires March 11, 2017 [Page 60]
�
Internet-Draft OVAL Common Model September 2016

 [W3C-BOOLEAN]
 W3C, "W3C Recommendation for Integer Data", 2004,
 <http://www.w3.org/TR/xmlSchema-2/#boolean>.

 [W3C-FLOAT]
 W3C, "W3C Recommendation for Floating Point Data", 2004,
 <http://www.w3.org/TR/xmlSchema-2/#float>.

 [W3C-HEX-BIN]
 W3C, "W3C Recommendation for Hex Binary Data", 2004,
 <http://www.w3.org/TR/xmlschema-2/#hexBinary>.

 [W3C-INT] W3C, "W3C Recommendation for Integer Data", 2004,
 <http://www.w3.org/TR/xmlSchema-2/#integer>.

 [W3C-STRING]
 W3C, "W3C Recommendation for String Data", 2004,
 <http://www.w3.org/TR/xmlSchema-2/#string>.

26.2. Informative References

 [OVAL-WEBSITE]
 The MITRE Corporation, "The Open Vulnerability and
 Assessment Language", 2015,
 <http://ovalproject.github.io/>.

Appendix A. Terms and Acronyms

Cokus, et al. Expires March 11, 2017 [Page 61]
�
Internet-Draft OVAL Common Model September 2016

 +-----------+---+
 | Term | Definition |
 +-----------+---+
OVAL	An action that can further specify the set of OVAL
Behavior	Items that matches an OVAL Object.
OVAL Test	An OVAL Test is the standardized representation of an
	assertion about the state of a system.
OVAL	An OVAL Object is a collection of OVAL Object
Object	Entities that can uniquely identify a single OVAL
	Item on the system.
OVAL Item	An OVAL Item is a single piece of collected system
	state information.
OVAL	An OVAL Construct that is specified in the oval-
Component	def:ComponentGroup.
OVAL	An OVAL Function is a capability used in OVAL
Function	Variables to manipulate a variable's value.
OVAL	An OVAL Variable represents a collection of values
Variable	that allow for dynamic substitutions and reuse of
	system state information.
OVAL	An OVAL Object Entity is a standardized
Object	representation for specifying a single piece of
Entity	system state information.
OVAL	An OVAL State Entity is a standardized representation
State	for checking a single piece of system state
Entity	information.
OVAL Item	An OVAL Item Entity is a standardized representation
Entity	for a single piece of system state information.
 +-----------+---+

 Table 12: Terms and Acronyms Definitions

Cokus, et al. Expires March 11, 2017 [Page 62]
�
Internet-Draft OVAL Common Model September 2016

 +---------+--+
 | Acronym | Definition |
 +---------+--+
 | CCE | Common Configuration Enumeration |
 | | |
 | CPE | Common Platform Enumeration |
 | | |

 | CVE | Common Vulnerabilities and Exposures |
 | | |
 | DHS | Department of Homeland Security |
 | | |
 | DNS | Domain Name System |
 | | |
 | IP | Internet Protocol |
 | | |
 | MAC | Media Access Control |
 | | |
 | NAC | Network Access Control |
 | | |
 | NIST | National Institute of Standards and Technology |
 | | |
 | NSA | National Security Agency |
 | | |
 | OVAL | Open Vulnerability and Assessment Language |
 | | |
 | SIM | Security Information Management |
 | | |
 | UML | Unified Modeling Language |
 | | |
 | URI | Uniform Resource Identifier |
 | | |
 | URN | Uniform Resource Name |
 | | |
 | W3C | World Wide Web Consortium |
 | | |
 | XML | eXtensible Markup Language |
 +---------+--+

 Table 13: Acronyms

Appendix B. Regular Expression Support

 The OVAL Language supports a common subset of the regular expression
 character classes, operations, expressions, and other lexical tokens
 defined within Perl 5's regular expression specification. This
 common subset was identified through a survey of several regular
 expression libraries in an effort to ensure that the regular
 expression elements supported by OVAL will be compatible with a wide

Cokus, et al. Expires March 11, 2017 [Page 63]
�
Internet-Draft OVAL Common Model September 2016

 variety of regular expression libraries. A listing of the surveyed
 regular expression libraries is provided later in this document.

B.1. Supported Regular Expression Syntax

 Perl regular expression modifiers (m, i, s, x) are not supported.
 These modifiers should be considered to always be 'OFF, unless
 specifically permitted by documentation on an OVAL Language
 construct.

 Character matching assumes a Unicode character set. Note that no
 syntax is supplied for specifying code points in hex; actual Unicode
 characters must be used instead.

 The following regular expression elements are specifically identified
 as supported in the OVAL Language. For more detailed definitions of
 the regular expression elements listed below, refer to their
 descriptions in the Perl 5.004 Regular Expression documentation. A
 copy of this documentation has been preserved for reference purposes
 [10]. Regular expression elements that are not listed below should
 be avoided as they are likely to be incompatible or have different
 meanings with commonly used regular expression libraries.

 Please note that while only a subset of the Perl 5 regular expression
 syntax is supported, content can be written that may still run in
 some OVAL interpreter tools. This practice should be avoided in
 order to maintain the portability of content across multiple tools.
 In the event that an attempt was made to evaluate a string against a
 malformed regular expression, an error must be reported. An example
 of a malformed regular expression is the pattern "+". An unsupported
 regular expression should only be reported as an error if the
 evaluating tool is not capable of analyzing the pattern. A malformed

 regular expression may remain ignored if the preceding existence
 check can determine the evaluation flag.

Cokus, et al. Expires March 11, 2017 [Page 64]
�
Internet-Draft OVAL Common Model September 2016

 +---------------+---+
 | Metacharacter | Description |
 +---------------+---+
\	Quote the next metacharacter	
^	Match the beginning of the line	
.	Match any character (except newline)	
$	Match the end of the line (or before newline at	
	the end)	
		Alternation
()	Grouping	
[]	Character class	
 +---------------+---+

 Table 14: Metacharacters

 +------------+--+
 | Quantifier | Description |
 +------------+--+
 | * | Match 0 or more times |
 | | |
 | + | Match 1 or more times |
 | | |
 | ? | Match 1 or 0 times |
 | | |
 | {n} | Match exactly n times |
 | | |
 | {n, } | Match at least n times |
 | | |
 | {n, m} | Match at least n but not more than m times |
 +------------+--+

 Table 15: Greedy Quantifiers

Cokus, et al. Expires March 11, 2017 [Page 65]
�
Internet-Draft OVAL Common Model September 2016

 +------------+--+

 | Quantifier | Description |
 +------------+--+
 | *? | Match 0 or more times |
 | | |
 | +? | Match 1 or more times |
 | | |
 | ?? | Match 0 or 1 time |
 | | |
 | {n}? | Match exactly n times |
 | | |
 | {n,}? | Match at least n times |
 | | |
 | {n,m}? | Match at least n but not more than m times |
 +------------+--+

 Table 16: Reluctant Quantifiers

 +-----------------+--------------------------------+
 | Escape Sequence | Description |
 +-----------------+--------------------------------+
 | \t | tab (HT, TAB) |
 | | |
 | \n | newline (LF, NL) |
 | | |
 | \r | return (CR) |
 | | |
 | \f | form feed (FF) |
 | | |
 | \033 | octal char (think of a PDP-11) |
 | | |
 | \x1B | hex char |
 | | |
 | \c[| control char |
 +-----------------+--------------------------------+

 Table 17: Escape Sequences

Cokus, et al. Expires March 11, 2017 [Page 66]
�
Internet-Draft OVAL Common Model September 2016

 +-----------------+---+
 | Character Class | Description |
 +-----------------+---+
\w	Match a "word" character (alphanumeric plus
	"_")
\W	Match a non-word character
\s	Match a whitespace character
\S	Match a non-whitespace character
\d	Match a digit character
\D	Match a non-digit character
 +-----------------+---+

 Table 18: Character Classes

 +-----------+-----------------------------+
 | Assertion | Description |
 +-----------+-----------------------------+
 | \b | Match a word boundary |
 | | |
 | \B | Match a non-(word boundary) |
 +-----------+-----------------------------+

 Table 19: Zero Width Assertions

 +------------+---+
 | Extension | Description |
 +------------+---+
 | (?:regexp) | Group without capture |
 | | |
 | (?=regexp) | Zero-width positive lookahead assertion |
 | | |
 | (?!regexp) | Zero-width negative lookahead assertion |
 +------------+---+

 Table 20: Extensions

Cokus, et al. Expires March 11, 2017 [Page 67]
�
Internet-Draft OVAL Common Model September 2016

 +---------------+---+
 | Regular | Description |
 | Expression | |
 +---------------+---+
[chars]	Match any of the specified characters	
[^chars]	Match anything that is not one of the specified	
	characters	
[a-b]	Match any character in the range between "a" and	
	"b, inclusive	
a	b	Alternation; match either the left side of the
	"	" or the right side
\n	When 'n' is a single digit: the nth capturing	
	group matched	
 +---------------+---+

 Table 21: Version 8 Regular Expressions

Authors' Addresses

 Michael Cokus
 The MITRE Corporation
 903 Enterprise Parkway, Suite 200
 Hampton, VA 23666
 USA

 Email: msc@mitre.org

 Daniel Haynes
 The MITRE Corporation
 202 Burlington Road
 Bedford, MA 01730
 USA

 Email: dhaynes@mitre.org

 David Rothenberg
 The MITRE Corporation
 202 Burlington Road
 Bedford, MA 01730
 USA

 Email: drothenberg@mitre.org

Cokus, et al. Expires March 11, 2017 [Page 68]
�
Internet-Draft OVAL Common Model September 2016

 Juan Gonzalez
 Department of Homeland Security
 245 Murray Lane
 Washington, DC 20548
 USA

 Email: juan.gonzalez@dhs.gov

Cokus, et al. Expires March 11, 2017 [Page 69]

