
core P. van der Stok
Internet-Draft consultant
Intended status: Standards Track A. Bierman
Expires: September 8, 2016 YumaWorks
 March 7, 2016

 CoAP Management Interface
 draft-vanderstok-core-comi-09

Abstract

 This document describes a network management interface for
 constrained devices, called CoMI. CoMI is an adaptation of the
 RESTCONF protocol for use in constrained devices and networks. The
 Constrained Application Protocol (CoAP) is used to access management
 data resources specified in YANG, or SMIv2 converted to YANG. CoMI
 use the YANG to CBOR mapping and encodes YANG names to reduce payload
 size.

Note

 Discussion and suggestions for improvement are requested, and should
 be sent to core@ietf.org.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on September 8, 2016.

Copyright Notice

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved.

van der Stok & Bierman Expires September 8, 2016 [Page 1]

Internet-Draft CoMI March 2016

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 3
 1.1. Terminology . 4
 1.1.1. Tree Diagrams . 5
 2. CoMI Architecture . 5
 2.1. RESTCONF/YANG Architecture 9
 2.1.1. Major differences between RESTCONF and CoMI 9
 2.2. Compression of data-node instance identifier 10
 3. CoAP Interface . 11
 4. MG Function Set . 13
 4.1. Data Retrieval . 13
 4.1.1. GET . 13
 4.1.2. Using the ’select’ Parameter 14
 4.1.3. Using the ’content’ query parameter 14
 4.1.4. Retrieval Examples 15
 4.2. Data Editing . 22
 4.2.1. Data Ordering . 22
 4.2.2. POST . 22
 4.2.3. PUT . 23
 4.2.4. PATCH . 23
 4.2.5. DELETE . 27
 4.2.6. Editing Multiple Resources 27
 4.3. Notify functions . 28
 4.4. RPC statements . 30
 4.4.1. Encoding RPC input parameters 31
 4.4.2. Encoding RPC output parameters 32
 4.5. Use of Block . 32
 4.6. Resource Discovery 33
 4.7. Error Return Codes 35
 5. Error Handling . 36
 6. Security Considerations 38
 7. IANA Considerations . 38
 8. Acknowledgements . 39
 9. Changelog . 39
 10. References . 42
 10.1. Normative References 42
 10.2. Informative References 44

van der Stok & Bierman Expires September 8, 2016 [Page 2]

Internet-Draft CoMI March 2016

 Appendix A. Payload and Server sizes 46
 Appendix B. Comparison with LWM2M 47
 Authors’ Addresses . 48

1. Introduction

 The Constrained Application Protocol (CoAP) [RFC7252] is designed for
 Machine to Machine (M2M) applications such as smart energy and
 building control. Constrained devices need to be managed in an
 automatic fashion to handle the large quantities of devices that are
 expected in future installations. The messages between devices need
 to be as small and infrequent as possible. The implementation
 complexity and runtime resources need to be as small as possible.

 This draft describes the CoAP Management Interface which uses CoAP
 methods to access structured data defined in YANG [RFC6020]. This
 draft is complementary to the draft [I-D.ietf-netconf-restconf] which
 describes a REST-like interface called RESTCONF, which uses HTTP
 methods to access structured data defined in YANG.

 The use of standardized data sets, specified in a standardized
 language such as YANG, promotes interoperability between devices and
 applications from different manufacturers. A large amount of
 Management Information Base (MIB) [RFC3418] [mibreg] specifications
 already exists for monitoring purposes. This data can be accessed in
 RESTCONF or CoMI if the server converts the SMIv2 modules to YANG,
 using the mapping rules defined in [RFC6643].

 RESTCONF allows access to data resources contained in NETCONF
 [RFC6241] data-stores. RESTCONF messages can be encoded in XML [XML]
 or JSON [RFC7159]. The GET method is used to retrieve data resources
 and the POST, PUT, PATCH, and DELETE methods are used to create,
 replace, merge, and delete data resources.

 CoMI supports the methods GET, PUT, PATCH, POST and DELETE. The
 payload of CoMI is encoded in CBOR [RFC7049] which can be
 automatically generated from JSON [RFC7159]. CBOR has a binary
 format and hence has more coding efficiency than JSON. RESTCONF
 relies on HTTP with TCP in contrast to CoMI which uses CoAP that is
 optimized for UDP with less overhead for small messages. RESTCONF
 uses the HTTP methods HEAD, and OPTIONS, which are not used by CoMI.

 CoMI and RESTCONF are intended to work in a stateless client-server
 fashion. They use a single round-trip to complete a single editing
 transaction, where NETCONF needs up to 10 round trips.

van der Stok & Bierman Expires September 8, 2016 [Page 3]

Internet-Draft CoMI March 2016

 To promote small packets, CoMI uses an additional "data-identifier
 string-to-number conversion" to minimize CBOR payloads and URI
 length.

 Currently, small managed devices need to support at least two
 protocols: CoAP and SNMP [RFC3411]. When the MIB can be accessed
 with the CoMI protocol, the SNMP protocol can be replaced with the
 CoAP protocol. Although the SNMP server size is not huge (see
 Appendix A), the code for the security aspects of SMIv3 [RFC3414] is
 not negligible. Using CoAP to access secured management objects
 reduces the code complexity of the stack in the constrained device,
 and harmonizes applications development.

1.1. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

 Readers of this specification should be familiar with all the terms
 and concepts discussed in [RFC3410], [RFC3416], and [RFC2578].

 The following terms are defined in the NETCONF protocol [RFC6241]:
 client, configuration data, data-store, and server.

 The following terms are defined in the YANG data modelling language
 [RFC6020]: container, data node, key, key leaf, leaf, leaf-list, and
 list. The following terms are defined in RESTCONF protocol
 [I-D.ietf-netconf-restconf]: data resource, data-store resource, edit
 operation, query parameter, target resource, and unified data-store.
 The terms YANG hash, and Rehash bit are defined in I-D.yang-hash.

 The following terms are defined in this document:

 Data-node instance: An instance of a data-node specified in a YANG
 module present in the server. The instance is stored in the
 memory of the server.

 Notification-node instance: An instance of a schema node of type
 notification, specified in a YANG module present in the server.
 The instance is generated in the server at the occurrence of the
 corresponding event and appended to a stream.

 The following list contains the abbreviations used in this document.

 XXXX: TODO, and others to follow.

van der Stok & Bierman Expires September 8, 2016 [Page 4]

Internet-Draft CoMI March 2016

1.1.1. Tree Diagrams

 A simplified graphical representation of the data model is used in
 the YANG modules specified in this document. The meaning of the
 symbols in these diagrams is as follows:

 Brackets "[" and "]" enclose list keys.

 Abbreviations before data node names: "rw" means configuration
 data (read-write) and "ro" state data (read-only).

 Symbols after data node names: "?" means an optional node, "!"
 means a presence container, and "*" denotes a list and leaf-list.

 Parentheses enclose choice and case nodes, and case nodes are also
 marked with a colon (":").

 Ellipsis ("...") stands for contents of subtrees that are not
 shown.

2. CoMI Architecture

 This section describes the CoMI architecture to use CoAP for the
 reading and modifying of instrumentation variables used for the
 management of the instrumented node.

van der Stok & Bierman Expires September 8, 2016 [Page 5]

Internet-Draft CoMI March 2016

 Client
 +--+
 | +----------------+ +----------------+ |
 | | SMIv2 | > | YANG | > COAP |
 | |specification(2)| |specification(1)| Request(3) |
 | +----------------+ +----------------+[* |
 +-----------------------------*-----------[---------*----------+
 * [*
 * [+-----------+
 mapping * security[| Network |
 * (8) [| packet(4) |
 * [+-----------+
 Server * [*
 +-----------------------------*-----------[---------*----------+
 | * [* |
 | * Retrieval, |
 | * Modification(5) |
 | */ * |
 | +---*--------+ |
	+--------------+ +------------+					
		configuration		Operational		
		(6b)		state(6a)		
	+--------------+ +------------+					
	variable store (6) *					
+---*--------+						
*						
Variable						
Instrumentation(7)						
 +--+

 Figure 1: Abstract CoMI architecture

 Figure 1 is a high level representation of the main elements of the
 CoAP management architecture. A client sends requests as payload in
 packets over the network to a managed constrained node.

 Objectives are:

 o Equip a constrained node with a management server that provides
 information about the operational characteristics of the code
 running in the constrained node.

 o The server provides this information in a variable store that
 contains values describing the performance characteristics and the
 code parameter values.

van der Stok & Bierman Expires September 8, 2016 [Page 6]

Internet-Draft CoMI March 2016

 o The client receives the performance characteristics on a regular
 basis or on request.

 o The client sets the parameter values in the server at bootstrap
 and intermittently when operational conditions change.

 o The constrained network requires the payload to be as small as
 possible, and the constrained server memory requirements should be
 as small as possible.

 For interoperability it is required that in addition to using the
 Internet Protocol for data transport:

 o The names, type, and semantics of the instrumentation variables
 are standardized.

 o The instrumentation variables are described in a standard
 language.

 o The URI of the CoAP request is standardized.

 o The format of the packet payload is standardized.

 o The notification from server to client is standardized.

 The different numbered components of Figure 1 are discussed according
 to component number.

 (1) YANG specification: contains a set of named and versioned
 modules. A module specifies a hierarchy of named and typed
 resources. A resource is uniquely identified by a sequence of its
 name and the names of the enveloping resources following the
 hierarchy order. The YANG specification serves as input to the
 writers of application and instrumentation code and the humans
 analyzing the returned values (arrow from YANG specification to
 Variable store). The specification can be used to check the
 correctness of the CoAP request and do the CBOR encoding.

 (2) SMIv2 specification: A named module specifies a set of variables
 and "conceptual tables". Named variables have simple types.
 Conceptual tables are composed of typed named columns. The
 variable name and module name identify the variable uniquely.
 There is an algorithm to translate SMIv2 specifications to YANG
 specifications.

 (3) CoAP request: The CoAP request needs a Universal Resource
 Identifier (URI) and the payload of the packet to send a request.
 The URI is composed of the schema, server, path and query and

van der Stok & Bierman Expires September 8, 2016 [Page 7]

Internet-Draft CoMI March 2016

 looks like coap://entry.example.com/<path>?<query>. Fragments are
 not supported. Allowed operations are PUT, PATCH, GET, DELETE,
 and POST. New variables can be created with POST when they exist
 in the YANG specification. The Observe option is used to return
 variable values regularly or on event occurrence (notification).

 (3.1) CoAP <path>: The path identifies the variable in the form
 "/mg/<encoded-name>".

 (3.2) CoAP <query>: The query parameter is used to specify
 additional (optional) aspects like the container name, list
 instance, and others. The idea is to keep the path simple and put
 variations on variable specification in the query.

 (3.3) CoAP discovery: Discovery of the variables is done with
 standard CoAP resource discovery using /.well-known/core with
 ?rt=/core.mg.

 (4) Network packet: The payload contains the CBOR encoding of JSON
 objects. This object corresponds with the converted RESTCONF
 message payload.

 (5) Retrieval, modification: The server needs to parse the CBOR
 encoded message and identify the corresponding instances in the
 Variable store. In addition, this component includes the code for
 CoAP Observe and block options.

 (6) Variable store: The store is composed of two parts: Operational
 state and Configuration data-store (see Section 2.1). CoMI does
 not differentiate between variable store types. The Variable
 store contains data-node instances. Values are stored in the
 appropriate instances, and or values are returned from the
 instances into the payload of the packet.

 (7) Variable instrumentation: This code depends on implementation of
 drivers and other node specific aspects. The Variable
 instrumentation code stores the values of the parameters into the
 appropriate places in the operational code. The variable
 instrumentation code reads current execution values from the
 operational code and stores them in the appropriate instances.

 (8) Security: The server MUST prevent unauthorized users from
 reading or writing any data resources. CoMI relies on DTLS
 [RFC6347] which is specified to secure CoAP communication.

van der Stok & Bierman Expires September 8, 2016 [Page 8]

Internet-Draft CoMI March 2016

2.1. RESTCONF/YANG Architecture

 CoMI adapts the RESTCONF architecture so data exchange and
 implementation requirements are optimized for constrained devices.

 The RESTCONF protocol uses a unified data-store to edit conceptual
 data structures supported by the server. The details of transaction
 preparation and non-volatile storage of the data are hidden from the
 RESTCONF client. CoMI also uses a unified data-store, to allow
 stateless editing of configuration variables and the notification of
 operational variables.

 The child schema nodes of the unified data-store include all the top-
 level YANG data nodes in all the YANG modules supported by the
 server. The YANG data structures represent a hierarchy of data
 resources. The client discovers the list of YANG modules, and
 important conformance information such as the module revision dates,
 YANG features supported, and YANG deviations required. The
 individual data nodes are discovered indirectly by parsing the YANG
 modules supported by the server.

 The YANG data definition statements contain a lot of information that
 can help automation tools, developers, and operators use the data
 model correctly and efficiently. The YANG definitions and server
 YANG module capability advertisements provide an "API contract" that
 allow a client to determine the detailed server management
 capabilities very quickly

 RESTCONF and CoMI use a simple algorithmic mapping from YANG to URI
 syntax to identify the target resource of a retrieval or edit
 operation. A client can construct operations or scripts using a
 predictable syntax, based on the YANG data definitions. The target
 resource URI can reference a data resource instance, or the data-
 store itself (to retrieve the entire data-store or create a top-level
 data resource instance). A compression algorithm reduces the size of
 the data-node instance identifier (see Section 2.2).

2.1.1. Major differences between RESTCONF and CoMI

 CoMI uses CoAP/UDP as transport protocol and CBOR as payload format.
 RESTCONF uses HTTP/TCP as transport protocol and JSON or XML as
 payload formats. CoMI encodes YANG name strings as numbers, where
 RESTCONF does not.

 CoAP servers MUST maintain the order of user-ordered data. CoMI does
 not support insert-mode (first, last, before, after) and insertion-
 point (before, after) which are supported by RESTCONF. Many CoAP

van der Stok & Bierman Expires September 8, 2016 [Page 9]

Internet-Draft CoMI March 2016

 servers will not support date and time functions. For that reason
 CoMI does not support the start, stop options for events.

 The CoMI "select" query parameter is equivalent to the RESTCONF
 "fields" query parameter but has a much simpler syntax. CoMI servers
 only implement the efficient "trim" mode for default values. CoMI
 servers implement a less rich syntax to specify key values in the URI
 than RESTCONF servers.

 CoMI servers do not support ’filter’ query that involves XML parsing,
 ’content’, ’depth’, and ’with-defaults’ query parameters.

 CoMI servers do not support the YANG functionality of anyxml,
 anydata, and xpath.

2.2. Compression of data-node instance identifier

 The JSON/CBOR encoding will include the module name string to specify
 the YANG module. If a representation of the target resource is
 included in the request or response message, then the data definition
 name string is used to identify each node in the message. The module
 namespace (or name) may also be present in these identifiers.

 In order to significantly reduce the size of identifiers used in
 CoMI, numeric object identifiers are used instead of these strings.
 The specific encoding of the object identifiers is not hard-wired in
 the protocol.

 YANG Hash is the default encoding for object identifiers
 [I-D.bierman-core-yang-hash]. This encoding in considered to be
 "unstructured" since the particular values for each object are
 determined by a hash algorithm. It is possible for 2 different
 objects to generate the same hash value. If this occurs, then the
 client and server will both need to rehash the colliding object
 identifiers to new unused hash values.

 In order to eliminate the need for rehashing, CoMI allows for
 alternate "structured" object identifier encoding formats.
 Structured object identifier MUST be managed such that no object ID
 collisions are possible, and therefore no rehash procedures are
 needed. Structured object identifiers can also be selected to
 minimize the size of a subset of the object identifiers (e.g., the
 most requested objects).

van der Stok & Bierman Expires September 8, 2016 [Page 10]

Internet-Draft CoMI March 2016

3. CoAP Interface

 In CoAP a group of links can constitute a Function Set. The format of
 the links is specified in [I-D.ietf-core-interfaces]. This note
 specifies a Management Function Set. CoMI end-points that implement
 the CoMI management protocol support at least one discoverable
 management resource of resource type (rt): core.mg, with path: /mg,
 where mg is short-hand for management. The name /mg is recommended
 but not compulsory (see Section 4.6).

 The path prefix /mg has resources accessible with the following five
 paths:

 /mg: YANG-based data with path "/mg" and using CBOR content encoding
 format. This path represents a data-store resource which contains
 YANG data resources as its descendant nodes. All identifiers
 referring to YANG data nodes within this path are encoded YANG
 names (see for example [I-D.bierman-core-yang-hash].

 /mg/mod.uri: URI identifying the location of the server module
 information, with path "/mg/mod.uri" and CBOR content format.
 This YANG data is encoded with plain identifier strings, not YANG
 encoded values. An Entity Tag MUST be maintained for this
 resource by the server, which MUST be changed to a new value when
 the set of YANG modules in use by the server changes.

 /mg/num.typ: String identifying the object ID numbering scheme used
 by the CoMI server. Two values are defined in this document: (1)
 ’yanghash’ to indicate that the YANG Hash numbering scheme is
 used, and (2) ’yangmanag’ to indicate that a managed numbering
 scheme is used. It is possible for other object numbering schemes
 to be defined outside the scope of this document.

 /mg/srv.typ: String identifying the CoMI server type. The value
 ’ro’ indicates that the server is a read-only server and no
 editing operations are supported. A read-only server is not
 required to provide YANG deviation statements for any writable
 YANG data nodes. The value ’rw’ indicates that the server is a
 read-write server and editing operations are supported. A read-
 write server is required to provide YANG deviation statements for
 any writable YANG data nodes that are not fully implemented.

 /mg/yh.uri: URI indicating the location of the server YANG hash
 information if any objects needed to be re-hashed by the server.
 It has the path "/mg/yh.uri" and is encoded in CBOR format. The
 "yang-hash" container within the "ietf-yang-hash" module,
 described in [I-D.bierman-core-yang-hash], is used to define the
 syntax and semantics of this data structure. This YANG data is

van der Stok & Bierman Expires September 8, 2016 [Page 11]

Internet-Draft CoMI March 2016

 encoded with plain identifier strings, not YANG hash values. The
 server will only have this resource if there are any objects that
 needed to be re-hashed due to a hash collision.

 /mg/stream: String identifying the default stream resource to which
 YANG notification instances are appended. Notification support is
 optional, so this resource will not exist if the server does not
 support any notifications.

 /mg/op: String identifying the resource to which YANG operations are
 appended.

 The mapping of YANG data node instances to CoMI resources is as
 follows: A YANG module describes a set of data trees composed of YANG
 data nodes. Every root of a data tree in a YANG module loaded in the
 CoMI server represents a resource of the server. All data root
 descendants represent sub-resources.

 The resource identifiers of the instances of the YANG specifications
 are encoded YANG names. When multiple instances of a list node
 exist, the instance selection is described in Section 4.1.4.4

 The profile of the management function set, with IF=core.mg, is shown
 in the table below, following the guidelines of
 [I-D.ietf-core-interfaces]:

 +--------------+-------------+-------------------+------------------+
 | name | path | rt | Data Type |
 +--------------+-------------+-------------------+------------------+
Management	/mg	core.mg	n/a
Data	/mg	core.mg.data	application/cbor
Module Set	/mg/mod.uri	core.mg.moduri	application/cbor
URI			
Numbering	/mg/num.typ	core.mg.num-type	application/cbor
Type			
Server Type	/mg/srv.typ	core.mg.srv-type	application/cbor
YANG Hash	/mg/yh.uri	core.mg.yang-hash	application/cbor
Info			
Events	/mg/stream	core.mg.stream	application/cbor
Operations	/mg/op	core.mg.op	application/cbor
 +--------------+-------------+-------------------+------------------+

van der Stok & Bierman Expires September 8, 2016 [Page 12]

Internet-Draft CoMI March 2016

4. MG Function Set

 The MG Function Set provides a CoAP interface to perform a subset of
 the functions provided by RESTCONF.

 A subset of the operations defined in RESTCONF are used in CoMI:

 +-----------+--+
 | Operation | Description |
 +-----------+--+
GET	Retrieve the data-store resource or a data resource
POST	Create a data resource
PUT	Create or replace a data resource
PATCH	Replace a data resource partially
DELETE	Delete a data resource
 +-----------+--+

4.1. Data Retrieval

4.1.1. GET

 One or more instances of data resources are retrieved by the client
 with the GET method. The RESTCONF GET operation is supported in
 CoMI. The same constraints apply as defined in section 3.3 of
 [I-D.ietf-netconf-restconf]. The operation is mapped to the GET
 method defined in section 5.8.1 of [RFC7252].

 It is possible that the size of the payload is too large to fit in a
 single message. In the case that management data is bigger than the
 maximum supported payload size, the Block mechanism from
 [I-D.ietf-core-block] is used, as explained in more detail in
 Section 4.5.

 There are three query parameters for the GET method. A CoMI server
 MUST implement the keys parameter and the content parameter, and MAY
 implement the select parameter to allow common data retrieval
 filtering functionality.

van der Stok & Bierman Expires September 8, 2016 [Page 13]

Internet-Draft CoMI March 2016

 +---------------+---+
 | Query | Description |
 | Parameter | |
 +---------------+---+
keys	Request to select instances of a YANG definition
select	Request to select sub-trees from the target
	resource
content	Request to select configuration and non-
	configuration nodes
 +---------------+---+

 The "keys" parameter is used to specify a specific instance of the
 list resource. When keys is not specified, all instances are
 returned. When no or one instance of the resource exists, the keys
 parameter is ignored.

4.1.2. Using the ’select’ Parameter

 RESTCONF uses the ’filter’ parameter next to the ’fields’ parameter
 to specify an expression which can represent a subset of all data
 nodes within the target resource [I-D.ietf-netconf-restconf]. The
 ’select’ parameter is local to CoMI and is useful for filtering sub-
 trees and retrieving only a subset that a managing application is
 interested in.

 Because filtering is a resource intensive task and not all
 constrained devices can be expected to have enough computing
 resources such that they will be able to successfully filter and
 return a subset of a sub-tree. This is especially likely to be true
 with Class 0 devices that have significantly lesser RAM than 10 KiB
 [RFC7228]. Since CoMI is targeted at constrained devices and
 networks, the ’filter’ parameter is not used here.

 The implementation of the ’select’ parameter is already optional for
 constrained devices, however, even when implemented it is expected to
 be a best effort feature, rather than a service that nodes must
 provide. This implies that if a node receives the ’select’ parameter
 specifying a set of sub-trees that should be returned, it will only
 return those that it is able to return.

4.1.3. Using the ’content’ query parameter

 The "content" parameter controls how descendant nodes of the
 requested data nodes will be processed in the reply.

 The allowed values are:

van der Stok & Bierman Expires September 8, 2016 [Page 14]

Internet-Draft CoMI March 2016

 +------------+--+
 | Value | Description |
 +------------+--+
config	Return only configuration descendant data nodes
nonconfig	Return only non-configuration descendant data nodes
all	Return all descendant data nodes
 +------------+--+

 This parameter is only allowed for GET methods on datastore and data
 resources. A 4.00 Bad Request error is returned if used for other
 methods or resource types.

 The default value is determined by the "config" statement value of
 the requested data nodes. If the "config" value is "false", then the
 default for the "content" parameter is "nonconfig". If "config" is
 "true" then the default for the "content" parameter is "config".

4.1.4. Retrieval Examples

 In all examples the path is expressed in readable names and as a
 encoded value of the name (where the encoded value in the payload is
 expressed as a hexadecimal number, and the encoded value in the URL
 as a base64 number). CoMI payloads use the CBOR format. The CBOR
 syntax of the YANG payloads is specified in TODO REF. The examples
 in this section use a JSON payload with extensions to approach the
 permissible CBOR payload, called "diagnostic JSON".

4.1.4.1. Single instance retrieval

 A request to read the values of instances of a management object or
 the leaf of an object is sent with a confirmable CoAP GET message. A
 single object is specified in the URI path prefixed with /mg.

 Using for example the clock container from [RFC7317], a request is
 sent to retrieve the value of clock/current-datetime specified in
 module system-state. The answer to the request returns a
 (identifier, value) pair, transported as a CBOR map with a single
 item.

 REQ: GET example.com/mg/system-state/clock/current-datetime

 RES: 2.05 Content (Content-Format: application/cbor)
 {
 "current-datetime" : "2014-10-26T12:16:31Z"
 }

van der Stok & Bierman Expires September 8, 2016 [Page 15]

Internet-Draft CoMI March 2016

 The specified object can be an entire object. Accordingly, the
 returned payload is composed of all the leaves associated with the
 object. The payload is a CBOR map where each leaf is returned as a
 (encoded YANG name, value) pair. For example, the GET of the clock
 object, sent by the client, results in the following returned payload
 sent by the managed entity, transported as A CBOR map with two items:

 REQ: GET example.com/mg/system-state/clock
 (Content-Format: application/cbor)

 RES: 2.05 Content (Content-Format: application/cbor)
 {
 "clock" : {
 "current-datetime" : "2014-10-26T12:16:51Z",
 "boot-datetime" : "2014-10-21T03:00:00Z"
 }
 }

 For example, the YANG names can be replaced by the hash values for
 ’clock’, ’current-datetime’, and ’boot-datetime’. The 30 bit murmur3
 hash value of ’clock’ equates: CDKSQ (xref target="I-D.bierman-core-
 yang-hash"/>. The request using hash values is shown below:

 REQ: GET example.com/mg/CDKSQ
 (Content-Format: application/cbor)

 RES: 2.05 Content (Content-Format: application/cbor)
 {
 0x021ca491 : {

 0x047c468b : "2014-10-26T12:16:51Z",
 0x1fb5f4f8 : "2014-10-21T03:00:00Z"
 }
 }

4.1.4.2. Multiple instance retrieval

 A "list" node can have multiple instances. Accordingly, the returned
 payload is composed of all the instances associated with the list
 node. Each instance is returned as a (key, object) pair, where key
 and object are composed of one or more (identifier, value) pairs.

 For example, the GET of the /interfaces/interface/ipv6/neighbor
 results in the following returned payload sent by the managed entity,
 transported as a CBOR map of 3 (key : object) pairs, where key and

van der Stok & Bierman Expires September 8, 2016 [Page 16]

Internet-Draft CoMI March 2016

 value are CBOR maps with one entry each. In this case the key is the
 "ip" attribute and the value is the "link-layer-address" attribute.

 REQ: GET example.com/mg/interfaces/interface/ipv6/neighbor
 (Content-Format: application/cbor)

 RES: 2.05 Content (Content-Format: application/cbor)
 {
 "neighbor" :{
 {"ip" : "fe80::200:f8ff:fe21:67cf"}:
 {"link-layer-address" : "00:00::10:01:23:45"}
 ,
 {"ip" : "fe80::200:f8ff:fe21:6708"}:
 {"link-layer-address" : "00:00::10:54:32:10"}
 ,
 {"ip" : "fe80::200:f8ff:fe21:88ee"}:
 {"link-layer-address" : "00:00::10:98:76:54"}
 }
 }

4.1.4.3. Access to MIB Data

 The YANG translation of the SMI specifying the
 ipNetToMediaTable [RFC4293] yields:

van der Stok & Bierman Expires September 8, 2016 [Page 17]

Internet-Draft CoMI March 2016

 container IP-MIB {
 container ipNetToPhysicalTable {
 list ipNetToPhysicalEntry {
 key "ipNetToPhysicalIfIndex
 ipNetToPhysicalNetAddressType
 ipNetToPhysicalNetAddress";
 leaf ipNetToMediaIfIndex {
 type: int32;
 }
 leaf ipNetToPhysicalIfIndex {
 type if-mib:InterfaceIndex;
 }
 leaf ipNetToPhysicalNetAddressType {
 type inet-address:InetAddressType;
 }
 leaf ipNetToPhysicalNetAddress {
 type inet-address:InetAddress;
 }
 leaf ipNetToPhysicalPhysAddress {
 type yang:phys-address {
 length "0..65535";
 }
 }
 leaf ipNetToPhysicalLastUpdated {
 type yang:timestamp;
 }
 leaf ipNetToPhysicalType {
 type enumeration { ... }
 }
 leaf ipNetToPhysicalState {
 type enumeration { ... }
 }
 leaf ipNetToPhysicalRowStatus {
 type snmpv2-tc:RowStatus;
 }
 }
 }

 The following example shows an "ipNetToPhysicalTable" with 2
 instances, using JSON encoding as defined in
 [I-D.ietf-netmod-yang-json]:

van der Stok & Bierman Expires September 8, 2016 [Page 18]

Internet-Draft CoMI March 2016

 {
 "IP-MIB/ipNetToPhysicalTable/ipNetToPhysicalEntry" : [
 {
 "ipNetToPhysicalIfIndex" : 1,
 "ipNetToPhysicalNetAddressType" : "ipv4",
 "ipNetToPhysicalNetAddress" : "10.0.0.51",
 "ipNetToPhysicalPhysAddress" : "00:00:10:01:23:45",
 "ipNetToPhysicalLastUpdated" : "2333943",
 "ipNetToPhysicalType" : "static",
 "ipNetToPhysicalState" : "reachable",
 "ipNetToPhysicalRowStatus" : "active"
 },
 {
 "ipNetToPhysicalIfIndex" : 1,
 "ipNetToPhysicalNetAddressType" : "ipv4",
 "ipNetToPhysicalNetAddress" : "9.2.3.4",
 "ipNetToPhysicalPhysAddress" : "00:00:10:54:32:10",
 "ipNetToPhysicalLastUpdated" : "2329836",
 "ipNetToPhysicalType" : "dynamic",
 "ipNetToPhysicalState" : "unknown",
 "ipNetToPhysicalRowStatus" : "active"
 }
]
 }
 }
 }

4.1.4.4. The ’keys’ Query Parameter

 There is a query parameter that MUST be supported by servers called
 "keys". This parameter is used to specify the key values for an
 instance of an object identified by an encoded YANG name. All key
 leaf values of the instance are passed in order. The first key leaf
 in the top-most list is the first key encoded in the ’keys’
 parameter.

 The key leafs from top to bottom and left to right are encoded as a
 comma-delimited list. If a key leaf value is missing then all values
 for that key leaf are returned.

 Example: In this example exactly one instance is requested from the
 ipNetToPhysicalEntry (from a previous example). The CBOR payload,
 here represented with diagnostic JSON, permits to transport the
 selected instance and nothing more.

 TODO refer to the section in YANG to CBOR mapping

van der Stok & Bierman Expires September 8, 2016 [Page 19]

Internet-Draft CoMI March 2016

REQ: GET example.com/mg/IP-MIB/ipNetToPhysicalTable/ipNetToPhysicalEntry?key
s=1,ipv4,9.2.3.4

RES: 2.05 Content (Content-Format: application/cbor)
{
 "IP-MIB/ipNetToPhysicalTable/ipNetToPhysicalEntry": {
 {
 "ipNetToPhysicalIfIndex" : 1,
 "ipNetToPhysicalNetAddressType" : "ipv4",
 "ipNetToPhysicalNetAddress" : "9.2.3.4"}:
 {
 "ipNetToPhysicalPhysAddress" : "00:00:10:54:32:10",
 "ipNetToPhysicalLastUpdated" : "2329836",
 "ipNetToPhysicalType" : "dynamic",
 "ipNetToPhysicalState" : "unknown",
 "ipNetToPhysicalRowStatus" : "active"
 }
 }
}

 An example illustrates the syntax of keys query parameter. In this
 example the following YANG module is used:

 module foo-mod {
 namespace foo-mod-ns;
 prefix foo;

 list A {
 key "key1 key2";
 leaf key1 { type string; }
 leaf key2 { type int32; }
 list B {
 key "key3";
 leaf key3 { type string; }
 leaf col1 { type uint32; }
 }
 }
 }

 The following string represents the CoMI target resource identifier
 for the instance of the "col1" leaf with key values "top", 17,
 "group":

 /mg/foo-mod:A/B/col1?keys="top",17,"group1"

van der Stok & Bierman Expires September 8, 2016 [Page 20]

Internet-Draft CoMI March 2016

4.1.4.5. The ’select’ Query Parameter

 The select parameter is used along with the GET method to provide a
 sub-tree filter mechanism. A list of encoded YANG names that should
 be filtered is provided along with a list of keys identifying the
 instances that should be returned. When the keys parameter is used
 together with the select, the key values are added in brackets
 without using the "keys=" text.

 Data may be retrieved using the select query parameter in the
 following way, transported as a CBOR maps of maps:

REQ: GET example.com/mg/IP-MIB/ipNetToPhysicalTable/ipNetToPhysicalEntry?sel
ect=(10.0.0.51)

RES: 2.05 Content (Content-Format: application/cbor)
{
 "IP-MIB/ipNetToPhysicalTable/ipNetToPhysicalEntry": {
 {
 "ipNetToPhysicalIfIndex" : 1,
 "ipNetToPhysicalNetAddressType" : "ipv4",
 "ipNetToPhysicalNetAddress" : "10.0.0.51"}:
 {
 "ipNetToPhysicalPhysAddress" : "00:00:10:01:23:45",
 "ipNetToPhysicalLastUpdated" : "2333943",
 "ipNetToPhysicalType" : "static",
 "ipNetToPhysicalState" : "reachable",
 "ipNetToPhysicalRowStatus" : "active"
 }
 }
}

 In this example exactly one instance is returned as response from the
 ipNetToPhysicalTable because only this instance matches the provided
 keys.

 Supposing there were multiple YANG fields with their own sets of keys
 that were to be filtered, the select query parameter can be used to
 retrieve results from these in one go as well. Using the "foo-mod"
 module of Section 4.1.4.4, the following string represents the CoMI
 target resource identifier when multiple fields, with their own sets
 of key values are queried:

 /mg/foo-mod:A?select=B/col1("top",17,"group"),key2("top")

van der Stok & Bierman Expires September 8, 2016 [Page 21]

Internet-Draft CoMI March 2016

4.1.4.6. Defaults handling

 If the target of a GET method is a data node that represents a leaf
 that has a default value, and the leaf has not been given a value
 yet, the server MUST not return the leaf.

 If the target of a GET method is a data node that represents a
 container or list that has any child resources with default values,
 for the child resources that have not been given value yet, the
 server MUST not return the child resource.

4.2. Data Editing

 CoMI allows data-store contents to be created, modified and deleted
 using CoAP methods.

 Data-editing is an optional feature. The server will indicate its
 editing capability with the "/core.mg.srv-type resource type. If the
 value is ’rw’ then the server supports editing operations. If the
 value is ’ro’ then the server does not support editing operations.

4.2.1. Data Ordering

 A CoMI server is not required to support entry insertion of lists and
 leaf-lists that are ordered by the user (i.e., YANG statement
 "ordered-by user"). The ’insert’ and ’point’ query parameters from
 RESTCONF are not used in CoMI.

 A CoMI server SHOULD preserve the relative order of all user-ordered
 list and leaf-list entries that are received in a single edit
 request. These YANG data node types are encoded as arrays so
 messages will preserve their order.

4.2.2. POST

 Data resource instances are created with the POST method. The
 RESTCONF POST operation is supported in CoMI for creation of data
 resources and the invocation operation resources. Refer to
 Section 4.4 for details on operation resources. The same constraints
 apply as defined in section 4.4.1 of [I-D.ietf-netconf-restconf].
 The operation is mapped to the POST method defined in section 5.8.2
 of [RFC7252].

 There are no query parameters for the POST method.

van der Stok & Bierman Expires September 8, 2016 [Page 22]

Internet-Draft CoMI March 2016

4.2.3. PUT

 Data resource instances are created or replaced with the PUT method.
 The PUT operation is supported in CoMI. A request to set the values
 of instances of an object/leaf is sent with a confirmable CoAP PUT
 message. The Response is piggybacked to the CoAP ACK message
 corresponding with the Request. The same constraints apply as
 defined in section 3.5 of [I-D.ietf-netconf-restconf]. The operation
 is mapped to the PUT method defined in section 5.8.3 of [RFC7252].

 There are no query parameters for the PUT method.

4.2.4. PATCH

 Data resource instances are partially replaced with the PATCH method
 [I-D.vanderstok-core-patch]. The PATCH operation is supported in
 CoMI. A request to set the values of instances of a subset of the
 values of the resource is sent with a confirmable CoAP PATCH message.
 The Response is piggybacked to the CoAP ACK message corresponding
 with the Request. The same constraints apply as defined in section
 3.5 of [I-D.ietf-netconf-restconf]. The operation is mapped to the
 PATCH method defined in [I-D.vanderstok-core-patch].

 The processing of the PATCH command is specified by the CBOR payload.
 The CBOR patch payload describes the changes to be made to target
 YANG data nodes. It follows closely the rules described in
 [RFC7396]. If the CBOR patch payload contains objects that are not
 present in the target, these objects are added. If the target
 contains the specified object, the contents of the objects are
 replaced with the values of the payload. Null values indicate the
 removal of existing values. The CBOR patch extends [RFC7396] by
 specifying rules for list elements.

 TODO, review text after publication of YANG/CBOR and CBOR-merge
 drafts.

 For example consider the following YANG specification:

van der Stok & Bierman Expires September 8, 2016 [Page 23]

Internet-Draft CoMI March 2016

 module foo {
 namespace "http://example.com/book";
 prefix "bo";
 revision 2015-06-07;

 list B {
 key key1;
 key key2;
 leaf key1 { type string; }
 leaf key2 {type string; }
 leaf col1 { type int32; }
 leaf counter1 { type uint32; }
 }

 container book {
 leaf title { type string; }
 container author {
 leaf givenName {type string; }
 leaf familyName {type string; }
 }
 leaf-list tags {type string; }
 leaf content{type string;}
 leaf phoneNumber {type string;}
 }

 Consider the following target data nodes described with the JSON
 encoding of [I-D.ietf-netmod-yang-json].

van der Stok & Bierman Expires September 8, 2016 [Page 24]

Internet-Draft CoMI March 2016

 "B": [
 {
 "key1" : "author1",
 "key2" : "book2",
 "col1" : 25,
 "counter1" : 4321
 },
 {
 "key1" : "author5",
 "key2" : "book6",
 "col1" : 2,
 "counter1" : 1234
 }
]

 "book": {
 "title" : "mytitle",
 "author": {
 "givenName" : "John",
 "familyName" : "Doe"
 }
 "tags" : ["example", "sample"],
 "content" : "This will be unchanged"
 }

 The following changes are requested for the document (following the
 example from [RFC7396]: the title changes from "mytitle" to
 "favoured", the phoneNumber is added to the book container, the
 familyName is deleted, and "sample" is removed from the tags leaf-
 list. In addition author1, book1 item is removed, author5 counter1
 is upgraded, and a new author is added in B list. The following CBOR
 Patch payload, represented in JSON is sent.

 TODO: edit after publication of CBOR-merge draft.

van der Stok & Bierman Expires September 8, 2016 [Page 25]

Internet-Draft CoMI March 2016

 {
 "B": {
 { "key1" : "author1",
 "key2" : "book2"}:
 { null : null},
 { "key1" : "author5"} :
 {"counter1" : 4444},
 { "key1" : "newauthor",
 "key2" : "newbook"}:
 { "col1" : 1,
 "counter1" : 1}
 },
 "book" : {
 "title" : "favoured",
 "author": {"familyName" : null},
 "tags" : ["example"],
 "phoneNumber" : "+01-123-456-7890"
 }
 }

 In his example, the value "author5" specifies the entry uniquely.
 However, when several entries exist with the "author5" value for
 "key1", the outcome of the example Patch is undefined.

 The processing of the Patch payload results in the following new
 target data nodes.

van der Stok & Bierman Expires September 8, 2016 [Page 26]

Internet-Draft CoMI March 2016

 "B": [
 {
 "key1" : "newauthor",
 "key2" : "newbook",
 "col1" : 1,
 "counter1" : 1
 },
 {
 "key1" : "author5",
 "key2" : "book6",
 "col1" : 2,
 "counter1" : 4444
 }
]

 "book": {
 "title" : "favoured",
 "author": {
 "givenName" : "John"
 }
 "tags" : ["example"],
 "content" : "This will be unchanged",
 "phoneNumber" : +01-123-456-7890"
 }

 There are no query parameters for the PATCH method.

4.2.5. DELETE

 Data resource instances are deleted with the DELETE method. The
 RESTCONF DELETE operation is supported in CoMI. The same constraints
 apply as defined in section 3.7 of [I-D.ietf-netconf-restconf]. The
 operation is mapped to the DELETE method defined in section 5.8.4 of
 [RFC7252].

 There are no optional query parameters for the DELETE method.

4.2.6. Editing Multiple Resources

 Editing multiple data resources at once can allow a client to use
 fewer messages to make a configuration change. It also allows
 multiple edits to all be applied or none applied, which is not
 possible if the data resources are edited one at a time.

 It is easy to add multiple entries at once. The "PATCH" method can
 be used to simply patch the parent node(s) of the data resources to
 be added. If multiple top-level data resources need to be added,
 then the data-store itself (’/mg’) can be patched.

van der Stok & Bierman Expires September 8, 2016 [Page 27]

Internet-Draft CoMI March 2016

 If other operations need to be performed, or multiple operations need
 to be performed at once, then the YANG Patch
 [I-D.ietf-netconf-yang-patch] media type can be used with the PATCH
 method. A YANG patch is an ordered list of edits on the target
 resource, which can be a specific data node instance, or the data-
 store itself. The resource type used by YANG Patch is ’application/
 yang.patch’. A status message is returned in the response, using
 resource type ’application/yang.patch.status’.

 The following YANG tree diagram describes the YANG Patch structure,
 Each ’edit’ list entry has its own operation, sub-resource target,
 and new value (if needed).

 +--rw yang-patch
 +--rw patch-id? string
 +--rw comment? string
 +--rw edit* [edit-id]
 +--rw edit-id string
 +--rw operation enumeration
 +--rw target target-resource-offset
 +--rw point? target-resource-offset
 +--rw where? enumeration
 +--rw value

 Refer to [I-D.ietf-netconf-yang-patch] for more details on the YANG
 Patch request and response contents.

4.3. Notify functions

 Notification by the server to a selection of clients when an event
 occurs in the server is an essential function for the management of
 servers. CoMI allows events specified in YANG [RFC5277] to be
 notified to a selection of requesting clients. The server appends
 newly generated events to a stream. There is one, so-called
 "default", stream in a CoMI server. The /mg/stream resource
 identifies the default stream. The server MAY create additional
 streams. When a CoMI server generates an internal event, it is
 appended to the chosen stream, and the contents of a notification
 instance is ready to be sent to all CoMI clients which observe the
 chosen stream resource.

 Reception of generated notification instances is enabled with the
 CoAP Observe [I-D.ietf-core-observe] function. The client subscribes
 to the notifications by sending a GET request with an "Observe"
 option, specifying the /mg/stream resource when the default stream is
 selected.

van der Stok & Bierman Expires September 8, 2016 [Page 28]

Internet-Draft CoMI March 2016

 Every time an event is generated, the chosen stream is cleared, and
 the generated notification instance is appended to the chosen stream.
 After appending the instance, the contents of the instance is sent to
 all clients observing the modified stream.

 Suppose the server generates the event specified with:

 module example-port {
 ...
 prefix ep;
 ...
 notification example-port-fault {
 description
 "Event generated if a hardware fault on a
 line card port is detected";
 leaf port-name {
 type string;
 description "Port name";
 }
 leaf port-fault {
 type string;
 description "Error condition detected";
 }
 }
 }

 }

 By executing a GET on the /mg/stream resource the client receives the
 following response:

 REQ: GET example.com/mg/stream
 (observe option register)

 RES: 2.05 Content (Content-Format: application/cbor)
 {
 "example-port-fault":{
 "port-name" : "0/4/21",
 "port-fault" : "Open pin 2"
 }
 }

 In the example, the request returns a success response with the
 contents of the last generated event. Consecutively the server will
 regularly notify the client when a new event is generated.

van der Stok & Bierman Expires September 8, 2016 [Page 29]

Internet-Draft CoMI March 2016

 To check that the client is still alive, the server MUST send
 confirmable notifications once in a while. When the client does not
 confirm the notification from the server, the server will remove the
 client from the list of observers [I-D.ietf-core-observe].

 In the registration request, the client MAY include a "Response-To-
 Uri-Host" and optionally "Response-To-Uri-Port" option as defined in
 [I-D.becker-core-coap-sms-gprs]. In this case, the observations
 SHOULD be sent to the address and port indicated in these options.
 This can be useful when the client wants the managed device to send
 the trap information to a multicast address.

4.4. RPC statements

 An operation resource represents a protocol operation defined with
 the YANG "rpc" statement. It is invoked using a POST method on the
 operation resource with a Token value as specified in section 5.3
 "Request/Resonse matching" of [RFC7252] to match the operation
 request sent by the RPC requester to the Operation request sent by
 the RPC executor.

 POST mg/op/<operation>

 The <operation> field identifies the module name and rpc identifier
 string for the desired operation.

 For example, if "module-A" defined a "reset" operation, then invoking
 the operation from "module-A" would be requested as follows:

 POST example.com/mg/op/module-A:reset

 If the "rpc" statement has input parameters, then a message-body MAY
 be sent by the client in the request, otherwise the request message
 MUST NOT include a message-body.

 If the operation is successfully invoked the server MUST send a 2.04
 Changed status code. If the operation is not successfully invoked,
 then a message-body SHOULD be sent by the server, containing an
 error, as defined in Section 4.7.

 If the "rpc" statement has return parameters, then the server invokes
 a POST method with the same Token value as used in the request from
 the client. The payload contains the values of the return
 parameters.

van der Stok & Bierman Expires September 8, 2016 [Page 30]

Internet-Draft CoMI March 2016

4.4.1. Encoding RPC input parameters

 If the "rpc" statement has an "input" section, then the "input" node
 is provided in the message-body, corresponding to the YANG data
 definition statements within Request payload.

 The following YANG definition is used for the examples in this
 section.

 module example-ops {
 namespace "https://example.com/ns/example-ops";
 prefix "ops";

 rpc reboot {
 input {
 leaf delay {
 units seconds;
 type uint32;
 default 0;
 }
 leaf message { type string; }
 leaf language { type string; }
 }
 }

 rpc get-reboot-info {
 output {
 leaf reboot-time {
 units seconds;
 type uint32;
 }
 leaf message { type string; }
 leaf language { type string; }
 }
 }
 }

 The client might send the following POST request message:

van der Stok & Bierman Expires September 8, 2016 [Page 31]

Internet-Draft CoMI March 2016

 POST example.com/restconf/operations/example-ops:reboot
 Token:0x56
 Content-Type:
 { "example-ops:input":
 {
 "delay": 600,
 "message": "Going down for system maintenance"
 "language": "en-US"
 }
 }

 The server may respond with a 2.04 Changed.

4.4.2. Encoding RPC output parameters

 If the "rpc" statement has output parameters, then the "output" node
 is provided in a PUT message, corresponding to the YANG data
 definition statements within the "output" section.

 The "example-ops" YANG module defined Section 4.4 is used for the
 examples in this section.

 The client might send the following POST request message:

 POST example.com/mg/op/example-ops:get-reboot-info
 Token: 0x56

 The server might respond with a POST request that is related to the
 original RPC invocation by the Token value:

 POST [ip:port]/mg/op/example-ops:output
 Token: 0x56
 {"example-ops:output" :
 {
 "reboot-time" : 30,
 "message" : "Going down for system maintenance",
 "language" : "en-US"
 }
 }

4.5. Use of Block

 The CoAP protocol provides reliability by acknowledging the UDP
 datagrams. However, when large pieces of text need to be transported
 the datagrams get fragmented, thus creating constraints on the
 resources in the client, server and intermediate routers. The block

van der Stok & Bierman Expires September 8, 2016 [Page 32]

Internet-Draft CoMI March 2016

 option [I-D.ietf-core-block] allows the transport of the total
 payload in individual blocks of which the size can be adapted to the
 underlying fragment sizes such as: (UDP datagram size ˜64KiB, IPv6
 MTU of 1280, IEEE 802.15.4 payload of 60-80 bytes). Each block is
 individually acknowledged to guarantee reliability.

 The block size is specified as exponents of the power 2. The SZX
 exponent value can have 7 values ranging from 0 to 6 with associated
 block sizes given by 2**(SZX+4); for example SZX=0 specifies block
 size 16, and SZX=3 specifies block size 128.

 The block number of the block to transmit can be specified. There
 are two block options: Block1 option for the request payload
 transported with PUT, POST or PATCH, and the block2 option for the
 response payload with GET. Block1 and block2 can be combined.
 Examples showing the use of block option in conjunction with observer
 options are provided in [I-D.ietf-core-block].

 Notice that the Block mechanism splits the data at fixed positions,
 such that individual data fields may become fragmented. Therefore,
 assembly of multiple blocks may be required to process the complete
 data field.

 Beware of race conditions. Blocks are filled one at a time and care
 should be taken that the whole data representation is sent in
 multiple blocks sequentially without interruption. In the server,
 values are changed, lists are re-ordered, extended or reduced. When
 these actions happen during the serialization of the contents of the
 variables, the transported results do not correspond with a state
 having occurred in the server; or worse the returned values are
 inconsistent. For example: array length does not correspond with
 actual number of items. It may be advisable to use CBOR maps or CBOR
 arrays of undefined length which are foreseen for data streaming
 purposes.

4.6. Resource Discovery

 The presence and location of (path to) the management data are
 discovered by sending a GET request to "/.well-known/core" including
 a resource type (RT) parameter with the value "core.mg" [RFC6690].
 Upon success, the return payload will contain the root resource of
 the management data. It is up to the implementation to choose its
 root resource, but it is recommended that the value "/mg" is used,
 where possible. The example below shows the discovery of the
 presence and location of management data.

van der Stok & Bierman Expires September 8, 2016 [Page 33]

Internet-Draft CoMI March 2016

 REQ: GET /.well-known/core?rt=core.mg

 RES: 2.05 Content </mg>; rt="core.mg"

 Management objects MAY be discovered with the standard CoAP resource
 discovery. The implementation can add the encoded values of the
 object identifiers to /.well-known/core with rt="core.mg.data". The
 available objects identified by the encoded values can be discovered
 by sending a GET request to "/.well-known/core" including a resource
 type (RT) parameter with the value "core.mg.data". Upon success, the
 return payload will contain the registered encoded values and their
 location. The example below shows the discovery of the presence and
 location of management data.

 REQ: GET /.well-known/core?rt=core.mg.data

 RES: 2.05 Content </mg/BaAiN>; rt="core.mg.data",
 </mg/CF_fA>; rt="core.mg.data"

 Lists of encoded values may become prohibitively long. It is
 discouraged to provide long lists of objects on discovery.
 Therefore, it is recommended that details about management objects
 are discovered by reading the YANG module information stored in the
 "ietf-yang-library" module [I-D.ietf-netconf-restconf]. The resource
 "/mg/mod.uri" is used to retrieve the location of the YANG module
 library.

 The module list can be stored locally on each server, or remotely on
 a different server. The latter is advised when the deployment of
 many servers are identical.

van der Stok & Bierman Expires September 8, 2016 [Page 34]

Internet-Draft CoMI March 2016

 Local in example.com server:

 REQ: GET example.com/mg/mod.uri

 RES: 2.05 Content (Content-Format: application/cbor)
 {
 "mod.uri" : "example.com/mg/modules"
 }

 Remote in example-remote-server:

 REQ: GET example.com/mg/mod.uri

 RES: 2.05 Content (Content-Format: application/cbor)
 {
 "moduri" : "example-remote-server.com/mg/group17/modules"
 }

 Within the YANG module library all information about the module is
 stored such as: module identifier, identifier hierarchy, grouping,
 features and revision numbers.

 The hash identifier is obtained as specified in
 [I-D.bierman-core-yang-hash]. When a collision occurred in the name
 space of the target server, a rehash is executed.

4.7. Error Return Codes

 The RESTCONF return status codes defined in section 6 of the RESTCONF
 draft are used in CoMI error responses, except they are converted to
 CoAP error codes.

van der Stok & Bierman Expires September 8, 2016 [Page 35]

Internet-Draft CoMI March 2016

 +-------------------------------+------------------+
 | RESTCONF Status Line | CoAP Status Code |
 +-------------------------------+------------------+
 | 100 Continue | none? |
 | | |
 | 200 OK | 2.05 |
 | | |
 | 201 Created | 2.01 |
 | | |
 | 202 Accepted | none? |
 | | |
 | 204 No Content | 2.04 Changed |
 | | |
 | 304 Not Modified | 2.03 |
 | | |
 | 400 Bad Request | 4.00 |
 | | |
 | 403 Forbidden | 4.03 |
 | | |
 | 404 Not Found | 4.04 |
 | | |
 | 405 Method Not Allowed | 4.05 |
 | | |
 | 409 Conflict | none? |
 | | |
 | 412 Precondition Failed | 4.12 |
 | | |
 | 413 Request Entity Too Large | 4.13 |
 | | |
 | 414 Request-URI Too Large | 4.00 |
 | | |
 | 415 Unsupported Media Type | 4.15 |
 | | |
 | 500 Internal Server Error | 5.00 |
 | | |
 | 501 Not Implemented | 5.01 |
 | | |
 | 503 Service Unavailable | 5.03 |
 +-------------------------------+------------------+

5. Error Handling

 In case a request is received which cannot be processed properly, the
 managed entity MUST return an error message. This error message MUST
 contain a CoAP 4.xx or 5.xx response code, and SHOULD include
 additional information in the payload.

van der Stok & Bierman Expires September 8, 2016 [Page 36]

Internet-Draft CoMI March 2016

 Such an error message payload is encoded in CBOR, using the following
 structure:

 TODO: Adapt RESTCONF <errors> data structure for use in CoMI. Need
 to select the most important fields like <error-path>.

 errorMsg : ErrorMsg;

 *ErrorMsg {
 errorCode : uint;
 ?errorText : tstr;
 }

 The variable "errorCode" has one of the values from the table below,
 and the OPTIONAL "errorText" field contains a human readable
 explanation of the error.

 +----------------+----------------+---------------------------------+
 | CoMI Error | CoAP Error | Description |
 | Code | Code | |
 +----------------+----------------+---------------------------------+
0	4.00	General error
1	4.00	Malformed CBOR data
2	4.00	Incorrect CBOR datatype
3	4.00	Unknown MIB variable
4	4.00	Unknown conversion table
5	4.05	Attempt to write read-only
		variable
0..2	5.01	Access exceptions
0..18	5.00	SMI error status
 +----------------+----------------+---------------------------------+

 The CoAP error code 5.01 is associated with the exceptions defined in
 [RFC3416] and CoAP error code 5.00 is associated with the error-
 status defined in [RFC3416].

van der Stok & Bierman Expires September 8, 2016 [Page 37]

Internet-Draft CoMI March 2016

6. Security Considerations

 For secure network management, it is important to restrict access to
 configuration variables only to authorized parties. This requires
 integrity protection of both requests and responses, and depending on
 the application encryption.

 CoMI re-uses the security mechanisms already available to CoAP as
 much as possible. This includes DTLS [RFC6347] for protected access
 to resources, as well suitable authentication and authorization
 mechanisms.

 Among the security decisions that need to be made are selecting
 security modes and encryption mechanisms (see [RFC7252]). This
 requires a trade-off, as the NoKey mode gives no protection at all,
 but is easy to implement, whereas the X.509 mode is quite secure, but
 may be too complex for constrained devices.

 In addition, mechanisms for authentication and authorization may need
 to be selected.

 CoMI avoids defining new security mechanisms as much as possible.
 However some adaptations may still be required, to cater for CoMI’s
 specific requirements.

7. IANA Considerations

 ’rt="core.mg.data"’ needs registration with IANA.

 ’rt="core.mg.moduri"’ needs registration with IANA.

 ’rt="core.mg.num-type"’ needs registration with IANA.

 ’rt="core.mg.srv-type"’ needs registration with IANA.

 ’rt="core.mg.yang-hash"’ needs registration with IANA.

 ’rt="core.mg.stream"’ needs registration with IANA.

 ’rt="core.mg.op"’ needs registration with IANA.

 Content types to be registered:

 o application/comi+cbor

van der Stok & Bierman Expires September 8, 2016 [Page 38]

Internet-Draft CoMI March 2016

8. Acknowledgements

 We are very grateful to Bert Greevenbosch who was one of the original
 authors of the CoMI specification and specified CBOR encoding and use
 of hashes. Mehmet Ersue and Bert Wijnen explained the encoding
 aspects of PDUs transported under SNMP. Carsten Bormann has given
 feedback on the use of CBOR. The draft has benefited from comments
 (alphabetical order) by Somaraju Abhinav, Rodney Cummings, Dee
 Denteneer, Esko Dijk, Michael van Hartskamp, Alexander Pelov, Juergen
 Schoenwaelder, Anuj Sehgal, Zach Shelby, Hannes Tschofenig, Michel
 Veillette, Michael Verschoor, and Thomas Watteyne.

9. Changelog

 Changes from version 00 to version 01

 o Focus on MIB only

 o Introduced CBOR, JSON, removed BER

 o defined mappings from SMI to xx

 o Introduced the concept of addressable table rows

 Changes from version 01 to version 02

 o Focus on CBOR, used JSON for examples, removed XML and EXI

 o added uri-query attributes mod and con to specify modules and
 contexts

 o Definition of CBOR string conversion tables for data reduction

 o use of Block for multiple fragments

 o Error returns generalized

 o SMI - YANG - CBOR conversion

 Changes from version 02 to version 03

 o Added security considerations

 Changes from version 03 to version 04

 o Added design considerations section

 o Extended comparison of management protocols in introduction

van der Stok & Bierman Expires September 8, 2016 [Page 39]

Internet-Draft CoMI March 2016

 o Added automatic generation of CBOR tables

 o Moved lowpan table to Appendix

 Changes from version 04 to version 05

 o Merged SNMP access with RESTCONF access to management objects in
 small devices

 o Added CoMI architecture section

 o Added RESTCONf NETMOD description

 o Rewrote section 5 with YANG examples

 o Added server and payload size appendix

 o Removed Appendix C for now. It will be replaced with a YANG
 example.

 Changes from version 04 to version 05

 o Extended examples with hash representation

 o Added keys query parameter text

 o Added select query parameter text

 o Better separation between specification and instance

 o Section on discovery updated

 o Text on rehashing introduced

 o Elaborated SMI MIB example

 o Yang library use described

 o use of BigEndian/LittleEndian in Hash generation specified

 Changes from version 05 to version 06

 o Hash values in payload as hexadecimal and in URL in base64 numbers

 o Streamlined CoMI architecture text

 o Added select query parameter text

van der Stok & Bierman Expires September 8, 2016 [Page 40]

Internet-Draft CoMI March 2016

 o Data editing optional

 o Text on Notify added

 o Text on rehashing improved with example

 Changes from version 06 to version 07

 o reduced payload size by removing JSON hierarchy

 o changed rehash handling to support small clients

 o added LWM2M comparison

 o Notification handling as specified in YANG

 o Added Patch function

 o Rehashing completely reviewed

 o Discover type of YANG name encoding

 o Added new resource types

 o Read-only servers introduced

 o Multiple updates explained

 Changes from version 07 to version 08

 o Changed YANG Hash algorithm to use module name instead of prefix

 o Added rehash bit to allow return values to identify rehashed nodes
 in the response

 o Removed /mg/mod.set resource since this is not needed

 o Clarified that YANG Hash is done even for unimplemented objects

 o YANG lists transported as CBOR maps of maps

 o Adapted examples with more CBOR explanation

 o Added CBOR code examples in new appendix

 o Possibility to use other than default stream

 o Added text and examples for Patch payload

van der Stok & Bierman Expires September 8, 2016 [Page 41]

Internet-Draft CoMI March 2016

 o Repaired some examples

 o Added appendices on hash clash probability and hash clash storage
 overhead

 Changes from version 08 to version 09

 o Removed hash and YANG to CBOR sections

 o removed hashes from examples.

 o Added RPC

 o Added content query parameter.

 o Added default handling.

 o Listed differences with RESTCONF

10. References

10.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC5277] Chisholm, S. and H. Trevino, "NETCONF Event
 Notifications", RFC 5277, DOI 10.17487/RFC5277, July 2008,
 <http://www.rfc-editor.org/info/rfc5277>.

 [RFC6020] Bjorklund, M., Ed., "YANG - A Data Modeling Language for
 the Network Configuration Protocol (NETCONF)", RFC 6020,
 DOI 10.17487/RFC6020, October 2010,
 <http://www.rfc-editor.org/info/rfc6020>.

 [RFC7049] Bormann, C. and P. Hoffman, "Concise Binary Object
 Representation (CBOR)", RFC 7049, DOI 10.17487/RFC7049,
 October 2013, <http://www.rfc-editor.org/info/rfc7049>.

 [RFC7159] Bray, T., Ed., "The JavaScript Object Notation (JSON) Data
 Interchange Format", RFC 7159, DOI 10.17487/RFC7159, March
 2014, <http://www.rfc-editor.org/info/rfc7159>.

van der Stok & Bierman Expires September 8, 2016 [Page 42]

Internet-Draft CoMI March 2016

 [RFC7252] Shelby, Z., Hartke, K., and C. Bormann, "The Constrained
 Application Protocol (CoAP)", RFC 7252,
 DOI 10.17487/RFC7252, June 2014,
 <http://www.rfc-editor.org/info/rfc7252>.

 [RFC7396] Hoffman, P. and J. Snell, "JSON Merge Patch", RFC 7396,
 DOI 10.17487/RFC7396, October 2014,
 <http://www.rfc-editor.org/info/rfc7396>.

 [I-D.becker-core-coap-sms-gprs]
 Becker, M., Li, K., Kuladinithi, K., and T. Poetsch,
 "Transport of CoAP over SMS", draft-becker-core-coap-sms-
 gprs-05 (work in progress), August 2014.

 [I-D.ietf-core-block]
 Bormann, C. and Z. Shelby, "Block-wise transfers in CoAP",
 draft-ietf-core-block-18 (work in progress), September
 2015.

 [I-D.ietf-core-observe]
 Hartke, K., "Observing Resources in CoAP", draft-ietf-
 core-observe-16 (work in progress), December 2014.

 [I-D.ietf-netmod-yang-json]
 Lhotka, L., "JSON Encoding of Data Modeled with YANG",
 draft-ietf-netmod-yang-json-08 (work in progress),
 February 2016.

 [I-D.ietf-netconf-restconf]
 Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF
 Protocol", draft-ietf-netconf-restconf-09 (work in
 progress), December 2015.

 [I-D.vanderstok-core-patch]
 Stok, P. and A. Sehgal, "Patch Method for Constrained
 Application Protocol (CoAP)", draft-vanderstok-core-
 patch-02 (work in progress), October 2015.

 [I-D.ietf-netconf-yang-patch]
 Bierman, A., Bjorklund, M., and K. Watsen, "YANG Patch
 Media Type", draft-ietf-netconf-yang-patch-07 (work in
 progress), December 2015.

 [I-D.bierman-core-yang-hash]
 Bierman, A. and P. Stok, "YANG Hash", draft-bierman-core-
 yang-hash-00 (work in progress), February 2016.

van der Stok & Bierman Expires September 8, 2016 [Page 43]

Internet-Draft CoMI March 2016

10.2. Informative References

 [RFC2578] McCloghrie, K., Ed., Perkins, D., Ed., and J.
 Schoenwaelder, Ed., "Structure of Management Information
 Version 2 (SMIv2)", STD 58, RFC 2578,
 DOI 10.17487/RFC2578, April 1999,
 <http://www.rfc-editor.org/info/rfc2578>.

 [RFC3410] Case, J., Mundy, R., Partain, D., and B. Stewart,
 "Introduction and Applicability Statements for Internet-
 Standard Management Framework", RFC 3410,
 DOI 10.17487/RFC3410, December 2002,
 <http://www.rfc-editor.org/info/rfc3410>.

 [RFC3411] Harrington, D., Presuhn, R., and B. Wijnen, "An
 Architecture for Describing Simple Network Management
 Protocol (SNMP) Management Frameworks", STD 62, RFC 3411,
 DOI 10.17487/RFC3411, December 2002,
 <http://www.rfc-editor.org/info/rfc3411>.

 [RFC3414] Blumenthal, U. and B. Wijnen, "User-based Security Model
 (USM) for version 3 of the Simple Network Management
 Protocol (SNMPv3)", STD 62, RFC 3414,
 DOI 10.17487/RFC3414, December 2002,
 <http://www.rfc-editor.org/info/rfc3414>.

 [RFC3416] Presuhn, R., Ed., "Version 2 of the Protocol Operations
 for the Simple Network Management Protocol (SNMP)",
 STD 62, RFC 3416, DOI 10.17487/RFC3416, December 2002,
 <http://www.rfc-editor.org/info/rfc3416>.

 [RFC3418] Presuhn, R., Ed., "Management Information Base (MIB) for
 the Simple Network Management Protocol (SNMP)", STD 62,
 RFC 3418, DOI 10.17487/RFC3418, December 2002,
 <http://www.rfc-editor.org/info/rfc3418>.

 [RFC4293] Routhier, S., Ed., "Management Information Base for the
 Internet Protocol (IP)", RFC 4293, DOI 10.17487/RFC4293,
 April 2006, <http://www.rfc-editor.org/info/rfc4293>.

 [RFC6241] Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
 and A. Bierman, Ed., "Network Configuration Protocol
 (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,
 <http://www.rfc-editor.org/info/rfc6241>.

 [RFC6347] Rescorla, E. and N. Modadugu, "Datagram Transport Layer
 Security Version 1.2", RFC 6347, DOI 10.17487/RFC6347,
 January 2012, <http://www.rfc-editor.org/info/rfc6347>.

van der Stok & Bierman Expires September 8, 2016 [Page 44]

Internet-Draft CoMI March 2016

 [RFC6643] Schoenwaelder, J., "Translation of Structure of Management
 Information Version 2 (SMIv2) MIB Modules to YANG
 Modules", RFC 6643, DOI 10.17487/RFC6643, July 2012,
 <http://www.rfc-editor.org/info/rfc6643>.

 [RFC6690] Shelby, Z., "Constrained RESTful Environments (CoRE) Link
 Format", RFC 6690, DOI 10.17487/RFC6690, August 2012,
 <http://www.rfc-editor.org/info/rfc6690>.

 [RFC7228] Bormann, C., Ersue, M., and A. Keranen, "Terminology for
 Constrained-Node Networks", RFC 7228,
 DOI 10.17487/RFC7228, May 2014,
 <http://www.rfc-editor.org/info/rfc7228>.

 [RFC7317] Bierman, A. and M. Bjorklund, "A YANG Data Model for
 System Management", RFC 7317, DOI 10.17487/RFC7317, August
 2014, <http://www.rfc-editor.org/info/rfc7317>.

 [I-D.ietf-core-interfaces]
 Shelby, Z., Vial, M., and M. Koster, "Reusable Interface
 Definitions for Constrained RESTful Environments", draft-
 ietf-core-interfaces-04 (work in progress), October 2015.

 [I-D.ietf-lwig-coap]
 Kovatsch, M., Bergmann, O., and C. Bormann, "CoAP
 Implementation Guidance", draft-ietf-lwig-coap-03 (work in
 progress), July 2015.

 [XML] "Extensible Markup Language (XML)",
 Web http://www.w3.org/xml.

 [OMA] "OMA-TS-LightweightM2M-V1_0-20131210-C", Web
 http://technical.openmobilealliance.org/Technical/
 current_releases.aspx.

 [DTLS-size]
 Hummen, R., Shafagh, H., Raza, S., Voigt, T., and K.
 Wehrle, "Delegation-based Authentication and Authorization
 for the IP-based Internet of Things", Web
 http://www.vs.inf.ethz.ch/publ/papers/
 mshafagh_secon14.pdf.

 [mibreg] "Structure of Management Information (SMI) Numbers (MIB
 Module Registrations)", Web
 http://www.iana.org/assignments/smi-numbers/
 smi-numbers.xhtml/.

van der Stok & Bierman Expires September 8, 2016 [Page 45]

Internet-Draft CoMI March 2016

 [management]
 Schoenwalder, J. and A. Sehgal, "Management of the
 Internet of Things", Web http://cnds.eecs.jacobs-
 university.de/slides/2013-im-iot-management.pdf, 2013.

 [dcaf] Bormann, C., Bergmann, O., and S. Gerdes, "Delegated
 Authenticated Authorization for Constrained Environments",
 Private Information .

 [openwsn] Watteijne, T., "Coap size in Openwsn",
 Web http://builder.openwsn.org/.

 [Erbium] Kovatsch, M., "Erbium Memory footprint for coap-18",
 Private Communication .

Appendix A. Payload and Server sizes

 This section provides information on code sizes and payload sizes for
 a set of management servers. Approximate code sizes are:

 +---------------+------------+-------+-------+----------------------+
 | Code | processor | Text | Data | reference |
 +---------------+------------+-------+-------+----------------------+
Observe agent	erbium	800	n/a	[Erbium]
CoAP server	MSP430	1K	6	[openwsn]
SNMP server	ATmega128	9K	700	[management]
Secure SNMP	ATmega128	30K	1.5K	[management]
DTLS server	ATmega128	37K	2K	[management]
NETCONF	ATmega128	23K	627	[management]
JSON parser	CC2538	4.6K	8	[dcaf]
CBOR parser	CC2538	1.5K	2.6K	[dcaf]
DTLS server	ARM7	15K	4	[I-D.ietf-lwig-coap]
DTLS server	MSP430	15K	4	[DTLS-size]
Certificate	MSP430	23K		[DTLS-size]
Crypto	MSP430	2-8K		[DTLS-size]
 +---------------+------------+-------+-------+----------------------+

van der Stok & Bierman Expires September 8, 2016 [Page 46]

Internet-Draft CoMI March 2016

 Thomas says that the size of the CoAP server is rather arbitrary, as
 its size depends mostly on the implementation of the underlying
 library modules and interfaces.

 Payload sizes are compared for the following request payloads, where
 each attribute value is null (N.B. these sizes are educated guesses,
 will be replaced with generated data). The identifier are assumed to
 be a string representation of the OID. Sizes for SysUpTime differ
 due to preambles of payload. "CBOR opt" stands for CBOR payload
 where the strings are replaced by table numbers.

 +-------------------------+-----------+------+------+----------+
 | Request | BERR SNMP | JSON | CBOR | CBOR opt |
 +-------------------------+-----------+------+------+----------+
 | IPnetTOMediaTable | 205 | 327 | ˜327 | ˜51 |
 | | | | | |
 | lowpanIfStatsTable | | 710 | 614 | 121 |
 | | | | | |
 | sysUpTime | 29 | 13 | ˜13 | 20 |
 | | | | | |
 | RESTCONF example | | | | |
 +-------------------------+-----------+------+------+----------+

Appendix B. Comparison with LWM2M

 CoMI and LWM2M, both, provide RESTful device management services over
 CoAP. Differences between the designs are highlighted in this
 section.

 LWM2M [OMA] objects are defined by standardized numbers. When new
 types are needed, new numbers need to be defined. This is the major
 difference with CoMI and YANG, where new modules can incorporate any
 type that is required without going through a standardization
 process, but may lead to rehashing. On the one hand LWM2M is static
 with very small numbered objects, where CoMI with YANG is more
 dynamic, with a number conversion overhead.

 Unlike CoMI, which enables the use of SMIv2 and YANG data models for
 device management, LWM2M defines a new object resource model. This
 means that data models need to be redefined in order to use LWM2M.
 In contrast, CoMI provides access to a large variety of SMIv2 and
 YANG data modules that can be used immediately.

 Objects and resources within CoMI are identified with a YANG hash
 value, however, each object is described as a link in the CoRE Link
 Format by LWM2M. This approach by LWM2M can lead to larger complex
 URIs and more importantly payloads can grow large in size. Using a
 hash value to represent the objects and resources allows URIs and

van der Stok & Bierman Expires September 8, 2016 [Page 47]

Internet-Draft CoMI March 2016

 payloads to be smaller in size, which is important for constrained
 devices that may not have enough resources to process large messages.

 LWM2M encodes payload data in Type-length-value (TLV), JSON or plain
 text formats. While the TLV encoding is binary and can result in
 reduced message sizes, JSON and plain text are likely to result in
 large message sizes when lots of resources are being monitored or
 configured. Furthermore, CoMI’s use of CBOR gives it an advantage
 over the LWM2M’s TLV encoding as well since this too is more
 efficient [citation needed].

 CoMI is aligned with RESTCONF for constrained devices and uses YANG
 data models that have objects containing resources organized in a
 tree-like structure. On the other hand, LWM2M uses a very flat data
 model that follows the "object/instance/resource" format, with no
 possibility to have sub-resources. Complex data models are, as such,
 harder to model with LWM2M.

 In situations where resources need to be modified, CoMI uses the CoAP
 PATCH operation when resources are modified partially. However,
 LWM2M uses the CoAP PUT and POST operations, even when a subset of
 the resource needs modifications.

Authors’ Addresses

 Peter van der Stok
 consultant

 Phone: +31-492474673 (Netherlands), +33-966015248 (France)
 Email: consultancy@vanderstok.org
 URI: www.vanderstok.org

 Andy Bierman
 YumaWorks
 685 Cochran St.
 Suite #160
 Simi Valley, CA 93065
 USA

 Email: andy@yumaworks.com

van der Stok & Bierman Expires September 8, 2016 [Page 48]

